【题目】已知二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积和周长.
【答案】(1)y=﹣x2+4x﹣6;(2)S△ABC=6,△ABC的周长=2+2+2.
【解析】
(1)先把(2,0)、(0,﹣6)代入二次函数解析式,可得关于b、c的方程组,解即可求出函数解析式;
(2)由函数解析式,易求其对称轴,从而易得C点的坐标,再利用两点之间的距离公式,易求AB、BC,进而可求△ABC的面积和周长.
解:(1)把(2,0)、(0,﹣6)代入二次函数解析式,可得
,
解得,
故解析式是y=﹣x2+4x﹣6;
(2)∵对称轴x=﹣=4,
∴C点的坐标是(4,0),
∴AC=2,OB=6,AB=2,BC=2,
∴S△ABC=ACOB=×2×6=6,
△ABC的周长=AC+AB+BC=2+2+2.
科目:初中数学 来源: 题型:
【题目】如图,在中,点为边中点,动点从点出发,沿着的路径以每秒1个单位长度的速度运动到点,在此过程中线段的长度随着运动时间的函数关系如图2所示,则的长为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,BC是⊙O的直径,点A在⊙O上,AD⊥BC垂足为D,弧AE=弧AB,BE分别交AD、AC于点F、G.
(1)判断△FAG的形状,并说明理由;
(2)如图②若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由.
(3)在(2)的条件下,若BG=26,DF=5,求⊙O的直径BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形中,点是直线上动点,以为边作正方形,所在直线与所在直线交于点,连接.
(1)如图1,当点在边上时,延长交于点,与交于点,连接.
①求证:;
②若,求的值;
(2)当正方形的边长为4,时,请直接写出的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1和图2中的正方形ABCD和四边形AEFG都是正方形.
(1)如图1,连接DE,BG,M为线段BG的中点,连接AM,探究AM与DE的数量关系和位置关系,并证明你的结论;
(2)在图1的基础上,将正方形AEFG绕点A逆时针方向旋转到图2的位置,连结DE、BG,M为线段BG的中点,连结AM,探究AM与DE的数量关系和位置关系,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com