【题目】如图,已知A(1,6)B(n,﹣2)是一次函数y=kx+b的图象和反比例函数y= 的图象的两个交点,直线与y轴交于C点.
(1)求反比例函数和一次函数的表达式;
(2)求△BOC的面积;
(3)直接写出不等式kx+b﹣ >0的解集.
【答案】
(1)解:∵A(1,6)在反比例函数y= 的图象上,
∴m=6,
∴反比例函数的解析式为:y=
∵B(n,﹣2)在反比例函数y= 的图象上,
∴n=﹣3,
∵A(1,6),B(n,﹣2)是一次函数y=kx+b上的点,
∴
解得: ,
∴一次函数的解析式:y=2x+4,
(2)解:令x=0代入y=2x+4,
∴y=4,
∴C(0,4),
∴OC=4,
∴S△BOC= ×4×3=6,
(3)解:由图象可知:﹣3<x<0或x>1
【解析】(1)将A的坐标代入反比例函数的解析式即可求出m的值,然后将B的坐标代入反比例函数解析式即可求出n的值.最后将A、B的坐标代入一次函数的解析式即可求出一次函数的解析式.(2)求出点C的坐标,然后根据三角形面积公式即可求出△BOC的面积.(3)即找出一次函数的图象位于反比例函数的图象上方时x的取值范围.
科目:初中数学 来源: 题型:
【题目】如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.
(1)求证:∠A+∠C=∠B+D;
(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.
①以线段AC为边的“8字型”有 个,以点O为交点的“8字型”有 个;
②若∠B=100°,∠C=120°,求∠P的度数;
③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,D在边AC上,且.
如图1,填空______,______
如图2,若M为线段AC上的点,过M作直线于H,分别交直线AB、BC与点N、E.
求证:是等腰三角形;
试写出线段AN、CE、CD之间的数量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】任何一个正整数n都可以进行这样的分解:n=p×q(p、q是正整数,且p≤q).如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并且规定F(n)=.例如18=1×18=2×9=3×6,这时就有F(18)=.请解答下列问题:
(1)计算:F(24);
(2)当n为正整数时,求证:F(n3+2n2+n)=.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,BO平分∠ABC,CO平分∠ACB,MN经过点O,与AB,AC相交于点M,N,且MN∥BC,若AB=5,AC=6,则△AMN的周长为( )
A. 7 B. 9 C. 11 D. 16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(a,0),B(b,0),且+| b-6|=0.
(1)求A,B的坐标;
(2)如图2,点P为AB的垂直平分线上一点,BD⊥AP于点D,BE是△PBD的角平分线,EH⊥AB于点H,交BD于点G,若AD=m,DE=n,求△BEG的面积(用含m,n的式子表示);
(3)如图3,点M在AB的垂直平分线上,且∠MAB=40°,点N在MA的延长线上,且MN=8,求∠ABN的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知抛物线y=ax2+bx﹣3的对称轴为x=1,与x轴分别交于A、B两点,与y轴交于点C,一次函数y=x+1经过A,且与y轴交于点D.
(1)求该抛物线的解析式.
(2)如图(2),点P为抛物线B、C两点间部分上的任意一点(不含B,C两点),设点P的横坐标为t,设四边形DCPB的面积为S,求出S与t的函数关系式,并确定t为何值时,S取最大值?最大值是多少?
(3)如图(3),将△ODB沿直线y=x+1平移得到△O′D′B′,设O′B′与抛物线交于点E,连接ED′,若ED′恰好将△O′D′B′的面积分为1:2两部分,请直接写出此时平移的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证.当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,,,又有怎样的数量关系?请写出你的猜想,不需证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com