精英家教网 > 初中数学 > 题目详情

【题目】问题背景:

如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系

小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD

简单应用:

(1)在图①中,若AC=,BC=,则CD=

(2)如图③,AB是⊙O的直径,点C、D在⊙上,,若AB=13,BC=12,求CD的长

拓展规律:

(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)

(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是

【答案】(1)3;(2);(3);(4)PQ=AC或PQ=AC.

【解析】

试题分析:(1)由题意可知:AC+BC=CD,所以将AC与BC的长度代入即可得出CD的长度;

(2)连接AC、BD、AD即可将问题转化为第(1)问的问题,利用题目所给出的证明思路即可求出CD的长度;

(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,由(2)问题可知:AC+BC=CD1;又因为CD1=D1D,所以利用勾股定理即可求出CD的长度;

(4)根据题意可知:点E的位置有两种,分别是当点E在直线AC的右侧和当点E在直线AC的左侧时,连接CQ、CP后,利用(2)和(3)问的结论进行解答.

试题解析:(1)由题意知:AC+BC=CD,∴=CD,∴CD=3,;

(2)连接AC、BD、AD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵,∴AD=BD,将△BCD绕点D,逆时针旋转90°到△AED处,如图③,∴∠EAD=∠DBC,∵∠DBC+∠DAC=180°,∴∠EAD+∠DAC=180°,∴E、A、C三点共线,∵AB=13,BC=12,∴由勾股定理可求得:AC=5,∵BC=AE,∴CE=AE+AC=17,∵∠EDA=∠CDB,∴∠EDA+∠ADC=∠CDB+∠ADC,即∠EDC=∠ADB=90°,∵CD=ED,∴△EDC是等腰直角三角形,∴CE=CD,∴CD=

(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,连接D1A,D1B,D1C,如图④

由(2)的证明过程可知:AC+BC=D1C,∴D1C=,又∵D1D是⊙O的直径,∴∠DCD1=90°,∵AC=m,BC=n,∴由勾股定理可求得:,∴,∵,∴==,∵m<n,∴CD=

(3)当点E在直线AC的左侧时,如图⑤,连接CQ,PC,∵AC=BC,∠ACB=90°,点P是AB的中点,∴AP=CP,∠APC=90°,又∵CA=CE,点Q是AE的中点,∴∠CQA=90°,设AC=a,∵AE=AC,∴AE=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(2)的证明过程可知:AQ+CQ=PQ,∴PQ=a,∴PQ=AC;

当点E在直线AC的右侧时,如图⑥,连接CQ、CP,同理可知:∠AQC=∠APC=90°,设AC=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(3)的结论可知:PQ=(CQ﹣AQ),∴PQ=AC.

综上所述,线段PQ与AC的数量关系是PQ=AC或PQ=AC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个三角形的两边长分別为47,第三边长是方程x2-9x+18=0的根,则三角形的周长为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为 cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各命题都成立,而它们的逆命题不能成立的是( )

A.两直线平行,同位角相等 B.全等三角形的对应角相等

C.四边相等的四边形是菱形 D.直角三角形中, 斜边的平方等于两直角边的平方和

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC

(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;

(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?

(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图△ABC中,AB=ACD点在BC上,且BD=ADDC=AC(本题6分)

(1)写出图中两个等腰三角形,

2)求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=x2+4的图象的对称轴是(  )

A. 直线x=2B. 直线x=2C. yD. 直线x=4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若x1、x2是一元二次方程x2+2x﹣3=0的二个根,则x1x2的值是(  )
A.2
B.-2
C.3
D.-3

查看答案和解析>>

同步练习册答案