【题目】在△ABC中,AB=AC,∠BAC=90°,D为平面内的一点.
(1)如图1,当点D在边BC上时,且∠BAD=30°,求证:AD=BD.
(2)如图2,当点D在△ABC的外部,且满足∠BDC﹣∠ADC=45°,求证:BD=AD.
(3)如图3,若AB=4,当D、E分别为AB、AC的中点,把△DAE绕A点顺时针旋转,设旋转角为α(0<α≤180°),直线BD与CE的交点为P,连接PA,直接写出△PAC面积的最大值.
【答案】(1)见解析;(2)BD=AD,见解析;(3)2+2
【解析】
(1)如图1,将△ABD沿AB折叠,得到△ABE,连接DE,由折叠的性质可得AE=AD,BE=BD,∠EBD=∠ABD=45°,∠BAD=∠BAE=30°,可得∠DBE=90°,∠DAE=60°,由等腰直角三角形的性质和等边三角形的性质可得结论;
(2)如图2,过点A作AE⊥AD,且AE=AD,连接DE,由“SAS”可证△BAE≌△CAD,可得∠ACD=∠ABE,由“ASA”可证△DOB≌△DOE,可得DB=DE,由等腰直角三角形的性质可得结论;
(3)作PG⊥AC,交AC所在直线于点G,求出PG的最大值,即可求解.
(1)证明:如图1,将△ABD沿AB折叠,得到△ABE,连接DE,
∵AB=AC,∠BAC=90°,
∴∠ABC=45°,
∵将△ABD沿AB折叠,得到△ABE,
∴△ABD≌△ABE,
∴AE=AD,BE=BD,∠EBD=∠ABD=45°,∠BAD=∠BAE=30°,
∴∠DBE=90°,∠DAE=60°,且AD=AE,BE=BD,
∴△ADE是等边三角形,DE=BD,
∴AD=DE=BD;
(2)证明:如图2,过点A作AE⊥AD,且AE=AD,连接DE,
∵AE⊥AD,
∴∠DAE=∠BAC=90°,
∴∠BAE=∠DAC,且AD=AE,AB=AC,
∴△BAE≌△CAD(SAS)
∴∠ACD=∠ABE,
∵∠ACD+∠DCB+∠ABC=90°,
∴∠DCB+∠ABC+∠ABE=90°,
∴∠BOC=90°,
∵AE=AD,AE⊥AD,
∴DE=AD,∠ADE=45°,
∵∠BDC﹣∠ADC=45°,
∴∠BDC=∠ADC+45°=∠EDC,且DO=DO,∠DOB=∠DOE=90°,
∴△DOB≌△DOE(ASA)
∴BD=DE,
∴BD=AD;
(3)如图3,作PG⊥AC,交AC所在直线于点G,
∵D,E在以A为圆心,AD为半径的圆上,
当CE所在直线与⊙A相切时,直线BD与CE的交点P到直线AC的距离最大,
此时四边形ADPE是正方形,AD=PD=2,
则CE==2,
∴∠ACP=30°,
∴PC=2+2,
∴点P到AC所在直线的距离的最大值为:PG=1+.
∴△PAC的面积最大值为AC×PG=2+2.
科目:初中数学 来源: 题型:
【题目】某水果批发商销售每箱进价为40元的柑橘,物价部门规定每箱售价不得高于55元;市场调查发现,若每箱以45元的价格销售,平均每天销售105箱;每箱以50元的价格销售,平均每天销售90箱.假定每天销售量y(箱)与销售价x(元/箱)之间满足一次函数关系式.
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB=4,AD=6,∠ABC=60°,∠BAD与∠ABC的平分线AE、BF交于点P,连接PD,则tan∠ADP的值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:点A与⊙O上所有点的连线段中,长度的最小值称为点A到⊙O的最小距离,记为mA;点A与⊙O上所有点的连线段中,长度的最大值称为点A到⊙O的最大距离,记为MA,如图,⊙O的半径为r,点A在⊙O外,且OA=d,则mA=d﹣r.证明如下:
证明:如图1,设B为圆上任意一点,连结OA、OB、AB
①当O、A、B不共线时,AB>OA﹣OB
即AB>d﹣r
②当O、A、B共线时,AB=OA﹣OB
即AB=d﹣r
综上,AB≥d﹣r,即mA=d﹣r
(1)利用刚才的证明,结合所给的图2,⊙O的半径为r,点A在⊙O外,且OA=d,探究MA,你的结论是MA= ,请证明你的结论;
(2)已知⊙O的半径为2,mA=4,则MA= ;
(3)在平面直角坐标系中,以原点O为圆心,6为半径作⊙O,第二象限的点A的坐标为(﹣3,a),且mA=1,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线在坐标系中的位置如图所示,它与,轴的交点分别为,,是其对称轴上的动点,根据图中提供的信息,给出以下结论:①,②是的一个根,③若,,则.其中正确的有______个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交轴于,两点,交轴于点.直线经过点,.
(1)求抛物线的解析式;
(2)点是直线上方抛物线上一动点,设点的横坐标为.
①求面积最大值和此时的值;
②是直线上一动点,是否存在点,使以、、、为顶点的四边形是平行四边形,若存在,直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=,点E、F分别是线段AD、AC上的动点,(点E不与点A,D重合),且∠CEF=∠ACB.
(1)求AC的长和点D的坐标;
(2)求证:;
(3)当△EFC为等腰三角形时,求点E的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com