13£®ÏÂÁÐÎÊÌâÖÐÄÄЩÁ¿ÊÇ×Ô±äÁ¿£¿ÄÄЩÁ¿ÊÇ×Ô±äÁ¿µÄº¯Êý£¿ÊÔд³öÓÃ×Ô±äÁ¿±íʾº¯ÊýµÄʽ×Ó£¬²¢Ð´³ö×Ô±äÁ¿µÄȡֵ·¶Î§£®
£¨1£©Ò»¸öµ¯»É³Ó×î´óÄܳƲ»³¬¹ý10kgµÄÎïÌ壬ËüµÄÔ­³¤Îª10cm£¬¹ÒÉÏÖØÎïºóµ¯»ÉµÄ³¤¶Èy£¨cm£©ËæËù¹ÒÖØÎïµÄÖÊÁ¿x£¨kg£©µÄ±ä»¯¶ø±ä»¯£¬Ã¿¹Ò1kgÎïÌ壬µ¯»ÉÉ쳤0.5cm£»
£¨2£©ÉèÒ»³¤·½ÌåºÐ×Ó¸ßΪ30cm£¬µ×ÃæÊÇÕý·½ÐΣ¬µ×Ãæ±ß³¤a¸Ä±äʱ£¬Õâ¸ö³¤·½ÌåµÄÌå»ýV£¨cm3£©Ò²ËæÖ®¸Ä±ä£®

·ÖÎö £¨1£©¸ù¾Ýµ¯»ÉµÄ³¤¶ÈµÈÓÚÔ­³¤¼õÈ¥Ëõ¶ÌµÄ³¤¶È£¬ÁÐʽ¼´¿É£»
£¨2£©¸ù¾Ý³¤·½ÌåµÄÌå»ý¹«Ê½Áгöº¯Êýʽ£®

½â´ð ½â£º£¨1£©y=10-$\frac{1}{2}$x£¨x£¾10£©£¬ÆäÖÐxÊÇ×Ô±äÁ¿£¬yÊÇ×Ô±äÁ¿µÄº¯Êý£»
£¨2£©V=30a2£¨a£¾0£©£¬ÆäÖÐaÊÇ×Ô±äÁ¿£¬VÊÇ×Ô±äÁ¿µÄº¯Êý£®

µãÆÀ ±¾Ì⿼²éµÄÊÇÓÃÒ»´Îº¯Êý½â¾öʵ¼ÊÎÊÌ⣬ÒÑÖª×Ô±äÁ¿Çóº¯ÊýÖµ£¬ÒÑÖªº¯ÊýÖµÇó×Ô±äÁ¿µÄÖµ£¬ÊÇ»ù´¡Ì⣬¶Á¶®ÌâÄ¿ÐÅÏ¢ÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Ä³ÀºÇò¶Ó12Ãû¶ÓÔ±µÄÄêÁäÈç±í£º
ÄêÁ䣨Ë꣩18192021
ÈËÊý5412
ÔòÕâ12Ãû¶ÓÔ±ÄêÁäµÄÖÚÊýºÍÖÐλÊý·Ö±ðÊÇ18¡¢19£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÒÑÖªÖ±Ïßy=$\frac{1}{2}$x+$\frac{7}{2}$ÓëxÖá¡¢yÖá·Ö±ðÏཻÓÚB¡¢AÁ½µã£¬Å×ÎïÏßy=ax2+bx+c¾­¹ýA¡¢BÁ½µã£¬ÇÒ¶Ô³ÆÖáΪֱÏßx=-3£®
£¨1£©ÇóA¡¢BÁ½µãµÄ×ø±ê£¬²¢ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÉèÅ×ÎïÏߵĶԳÆÖáCDÓëÖ±ÏßABÏཻÓÚµãD£¬¶¥µãΪC£®ÇóCDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÏÂÁм¸ºÎÌåµÄÖ÷ÊÓͼÓëÆäËûÖ÷ÊÓͼ²»Ò»ÑùµÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Ò»¸öľ½³ÒªÖÆ×÷¾ØÐεÄ̤°å£®ËûÔÚÒ»¸ö¶Ô±ßƽÐеij¤Ä¾°åÉÏ·Ö±ðÑØÓ볤±ß´¹Ö±µÄ·½Ïò¾âÁËÁ½´Î£¬¾ÍÄܵõ½¾ØÐÎ̤°å£®ÎªÊ²Ã´£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®2010ÄêÉϺ£ÊÀ²©»áίÍÐij¹¤ÒÕÆ·³§Éú²úÊÀ²©»á»á±êºÍ¼ªÏéÎº£±¦¡°£¬¸Ã³§Ö÷ÒªÓüס¢ÒÒÁ½ÖÖÔ­ÁÏÉú²úÒ»¸ö»á±êÒªÓü×Ô­ÁÏ4ºÐ£¬ÒÒÔ­ÁÏ3ºÐ£¬Éú²úÒ»¸ö¡±º£±¦¡°ÐèÒª¼×Ô­ÁÏ5ºÐ£¬ÒÒÔ­ÁÏ10ºÐ£¬¸Ã³§Óɼ×Ô­ÁÏ2000ºÐ£¬ÒÒÔ­ÁÏ30000ºÐ£¬Ó¦ÔõÑù°²ÅŲÅÄܰÑÔ­ÁϸպÃÓÃÍꣿ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª¹ØÓÚx£¬yµÄ·½³Ì×é$\left\{\begin{array}{l}{ax-by=4}\\{3x-y=5}\end{array}\right.$Óë·½³Ì×é$\left\{\begin{array}{l}{ax+by=6}\\{4x-7y=1}\end{array}\right.$µÄ½âÏàͬ£¬Çóa¡¢bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Òòʽ·Ö½â£º
£¨1£©6a£¨m-2£©-8b£¨2-m£©£»
£¨2£©xm+2-2xm+1-xm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÈôµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©ÔÚË«ÇúÏßy=$\frac{2}{x}$ÉÏ£¬Èôx1£¾x2£¾0£¾x3£¬Ôòy1£¬y2£¬y3µÄ´óС¹ØÏµÎªy2£¾y1£¾y3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸