【题目】如图△ABC,AB=AC=24厘米,∠B=∠C,BC=16厘米,点D为AB的中点.点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为_____ 厘米/秒.
【答案】4或6
【解析】
此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△QCP,计算出BP的长,进而可得运动时间,然后再求v.
解:当BD=PC时,△BPD与△CQP全等,
∵点D为AB的中点,
∴BD=AB=12cm,
∵BD=PC,
∴BP=16﹣12=4(cm),
∵点P在线段BC上以4厘米/秒的速度由B点向C点运动,
∴运动时间时1s,
∵△DBP≌△PCQ,
∴BP=CQ=4cm,
∴v=4÷1=4厘米/秒;
当BD=CQ时,△BDP≌△QCP,
∵BD=12cm,PB=PC,
∴QC=12cm,
∵BC=16cm,
∴BP=4cm,
∴运动时间为4÷2=2(s),
∴v=12÷2=6厘米/秒.
故答案为:4或6.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx(a≠0)的图象过原点O和点A(1, ),且与x轴交于点B,△AOB的面积为。
(1)求抛物线的解析式;
(2)若抛物线的对称轴上存在一点M,使△AOM的周长最小,求M点的坐标;
(3)点F是x轴上一动点,过F作x轴的垂线,交直线AB于点E,交抛物线于点P,且PE=,直接写出点E的坐标(写出符合条件的两个点即可)。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形的面积为,依次取矩形各边中点、、、,顺次连结各中点得到第个四边形,再依次取四边形各边中点、、、,顺次连结各中点得到第个四边形,……,按照此方法继续下去,则第个四边形的面积为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.
(1)求地面矩形AOBC的长;
(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是 ,若点B′表示的数是2,则点B表示的数是 ;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是 .
(2)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣2,0),B(2,0),C(2,4),对△ABC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a,将得到的点先向右平移m单位,冉向上平移n个单位(m>0,n>0),得到△ABC及其内部的点,其中点A,B的对应点分别为A′(1,2),B′(3,2).△ABC内部是否存在点F,使得点F经过上述操作后得到的对应点F′与点F重合,若存在,求出点F的坐标;若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知CA=CB,CD是经过∠BCA顶点C的一条直线.E,F是直线CD上的两点,且∠BEC=∠CFA=α.
(1)若直线CD在∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,α=90°,则BE CF;EF |BE﹣AF|(填“>”,“<”或“=”);
②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA数量关系的条件 ,使①中的两个结论仍然成立,补全图形并证明.
(2)如图3,若直线CD在∠BCA的外部,∠BCA=α,请用等式直接写出EF,BE,AF三条线段的数量关系 .(不要求证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC中,BF是AC边上中线,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,当△AEF周长最小时,∠CFE的大小是( )
A. 30° B. 45° C. 60° D. 90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.
(1)求m的值和反比例函数的表达式;
(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果三角形有一个内角为120°,且过某一顶点的直线能将该 三角形分成两个等腰三角形,那么这个三角形最小的内角度数是
A. 15°B. 40C. 15°或20°D. 15°或40°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com