【题目】已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.
(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;
(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;
(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.
【答案】(1);(2)P出发秒或秒;(3)见解析.
【解析】
(1)由题意可知运动t秒时P点表示的数为-3+2t,Q点表示的数为1-t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;
(2)由点P比点Q迟1秒钟出发,则点Q运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;
(3)设点C表示的数为a,根据两点间的距离进行求解即可得.
(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;
若P,Q两点相遇,则有
-3+2t=1-t,
解得:t=,
∴,
∴点P和点Q相遇时的位置所对应的数为;
(2)∵点P比点Q迟1秒钟出发,∴点Q运动了(t+1)秒,
若点P和点Q在相遇前相距1个单位长度,
则,
解得:;
若点P和点Q在相遇后相距1个单位长度,
则2t+1×(t+1) =4+1,
解得:,
综合上述,当P出发秒或秒时,P和点Q相距1个单位长度;
(3)①若点P和点Q在相遇前相距1个单位长度,
此时点P表示的数为-3+2×=-,Q点表示的数为1-(1+)=-,
设此时数轴上存在-个点C,点C表示的数为a,由题意得
AC+PC+QC=|a+3|+|a+|+|a+|,
要使|a+3|+|a+|+|a+|最小,
当点C与P重合时,即a=-时,点C到点A、点P和点Q这三点的距离和最小;
②若点P和点Q在相遇后相距1个单位长度,
此时点P表示的数为-3+2×=-,Q点表示的数为1-(1+)=-,
此时满足条件的点C即为Q点,所表示的数为,
综上所述,点C所表示的数分别为-和-.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足 ,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.
(1)求证:AE⊥DE;
(2)若tan∠CBA= ,AE=3,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船只进入,如图,今有一中国海监船在位于钓鱼岛A正南方距岛60海里的B处海域巡逻,值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西30°的方向以12节的速度前往拦截,期间多次发出警告,2小时候海监船到达D处,与此同时日本渔船到达E处,此时海监船再次发出严重警告.
(1)当日本渔船受到严重警告信号后,必须沿北偏东转向多少度航行,才能恰好避免进入钓鱼岛12海里禁区?
(2)当日本渔船不听严重警告信号,仍按原速度,原方向继续前进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处强制拦截渔船,问海监船能否比日本渔船先到达F处?(注:①中国海监船的最大航速为18节,1节=1海里/小时;②参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31, ≈1.4, ≈1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),E是直线AB、CD内部一点,AB∥CD,连接EA、ED.
(1)探究:
①若∠A=30°,∠D=40°,则∠AED等于多少度?
②若∠A=20°,∠D=60°,则∠AED等于多少度?
③在图(1)中∠AED、∠EAB、∠EDC有什么数量关系,并证明你的结论.
(2)拓展:如图(2),射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的四个区域(不含边界,其中③④位于直线AB的上方),P是位于以上四个区域上点,猜想:∠PEB、∠PFC、∠EPF之间的关系.(不要求证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x﹣1与反比例函数y= 的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).
(1)求反比例函数的解析式;
(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:
(1)甲、乙两组工作一天,商店各应付多少钱?
(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用
较少?
(3)若装修完后,商店每天可赢利200元,现有三种方案:①甲组单独做;②乙组单独做;③甲、乙两组同时做.你认为哪一种施工方案更有利于商店?请你帮商店做出决策(可用(1)(2)问中的条件及结论).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数 (x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).
(1)在图中作出与△ABC 关于 y 轴对称的△A1B1C1(要求点 A 与 A1,点 B 与点B1,点 C 和点 C1 相对应);写出点 A1,B1,C1 的坐标(直接写答案)
(2)请求出△A1B1C1 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表: 甲、乙射击成绩统计表
平均数 | 中位数 | 方差 | 命中10环的次数 | |
甲 | 7 | 0 | ||
乙 | 1 |
甲、乙射击成绩折线图
(1)请补全上述图表(请直接在表中填空和补全折线图);
(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com