【题目】如图1,E为半圆O直径AB上一动点,C为半圆上一定点,连接AC和BC,AD平分∠CAB交BC于点D,连接CE和DE.如果AB=6cm,AC=2.5cm,设A,E两点间的距离为xcm,C,E两点间的距离为y1cm,D,E两点间的距离为y2cm.
小明根据学习函数经验,分别对函数y1和y2随自变量x变化而变化的规律进行了探究.
下面是小明的探究过程,请将它补充完整:
(1)按表中自变量x值进行取点、画图、测量,得到了y1和y2与x几组对应值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 2.50 | 2.27 | 2.47 | m | 3.73 | 4.56 | 5.46 |
y2/cm | 2.97 | 2.20 | 1.68 | 1.69 | 2.19 | 2.97 | 3.85 |
问题:上表中的m=______cm;
(2)在同一平面直角坐标系xOy中(见图2),描出补全后的表中各组数值所对应的点(x,y2)和(x,y1),并画出函数y1和y2的图象;
(3)结合函数的图象,解决问题:当△ACE为等腰三角形时,AE的长度约为______cm(结果精确到001).
【答案】(1)3;(2)见解析;(3)①2.5;②0;③3.
【解析】
(1)当x=3时,点E与点O重合,故CE即为CO,即可求解;
(2)根据表格数据,描点后图象如下图2;
(3)分AE=AC、AC=CE、AE=CE三种情况,求解即可.
解:(1)当x=3时,点E与点O重合,故CE即为CO=3,
故:答案为3;
(2)根据表格数据,描点后图象如下图2;
(3)△ACE为等腰三角形,有以下三种情况:
①当AE=AC时,
AE=AC=2.5;
②AC=CE时,
即y1=CE=2.5,从图象可以看出,x=0;
即:AE=0(舍去),
③当AE=CE时,
即:x=y1,从图中可以看出:x=3,
即:AE=3;
故:答案为2.50或3.00.
科目:初中数学 来源: 题型:
【题目】如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.
(1)若轮船照此速度与航向航向,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由(参考数据: ≈1.4, ≈1.7).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米, ≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,且∠ACB=90°.
(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明):
①以点A为圆心,BC边的长为半径作⊙A;
②以点B为顶点,在AB边的下方作∠ABD=∠BAC.
(2)请判断直线BD与⊙A的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知ABCD,点E是BC边上的一点,将边AD延长至点F,使∠AFC=∠DEC.
(1)求证:四边形DECF是平行四边形;
(2)若AB=13,DF=14,tan A=,求CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年“五一”假期,某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B点,再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1000米,斜坡BC的长为200米,在C点测得B点的俯角为45°,已知A点海拔21米,C点海拔721米.
(1)求B点的海拔;
(2)求斜坡AB的坡角.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:
学生体能测试成绩各等次人数统计表
体能等级 | 调整前人数 | 调整后人数 |
优秀 | 8 |
|
良好 | 16 |
|
及格 | 12 |
|
不及格 | 4 |
|
合计 | 40 |
|
(1)填写统计表;
(2)根据调整后数据,补全条形统计图;
(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为直线x=﹣1的抛物线y=x2+bx+c与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).
(1)求点B的坐标;
(2)求二次函数的解析式;
(3)已知C为抛物线与y轴的交点,设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com