精英家教网 > 初中数学 > 题目详情

【题目】等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是

【答案】77
【解析】解:由题意可得,每翻转三次与初始位置的形状相同,
15÷3=5,
故第15次翻转后点C的横坐标是:(5+5+6)×5﹣3=77,
故答案为:77.
根据题意可知每翻折三次与初始位置的形状相同,第15次于开始时形状相同,故以点B为参照点,第15次的坐标减去3即可的此时点C的横坐标.本题考查坐标与图形变化﹣旋转,等腰三角形的性质,解题的关键是发现其中的规律,每旋转三次为一个循环.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线l1∥l2∥l3 , 一等腰直角三角形ABC的三个顶点A,B,C分别在l1 , l2 , l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则 的值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: +2sin60°﹣|﹣ |﹣(﹣2015)0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,⊙P与y轴相切于点C,⊙P的半径是4,直线y=x被⊙P截得的弦AB的长为4 ,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,O为坐标原点.直线y=kx+b与抛物线y=mx2 x+n同时经过A(0,3)、B(4,0).

(1)求m,n的值.
(2)点M是二次函数图象上一点,(点M在AB下方),过M作MN⊥x轴,与AB交于点N,与x轴交于点Q.求MN的最大值.
(3)在(2)的条件下,是否存在点N,使△AOB和△NOQ相似?若存在,求出N点坐标,不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.

(1)求证:AC∥DE;
(2)若BF=13,EC=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年9月举行“全国中学生数学联赛”,成绩优异的选手可参加“全国中学生数学冬令营”,冬令营再选拔出50名优秀选手进入“国家集训队”.第31界冬令营已于2015年12月在江西省鹰谭一中成功举行.现将脱颖而出的50名选手分成两组进行竞赛,每组25人,成绩整理并绘制成如下的统计图:

请你根据以上提供的信息解答下列问题:

(1)请你将表格和条形统计图补充完整:

平均数

中位数

众数

方差

一组

74

__________

__________

104

二组

__________

__________

__________

72

(2)从本次统计数据来看,__________组比较稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC△DBE均为等腰直角三角形.

(1)求证:AD=CE;

(2)求证:ADCE垂直.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,乙先出发一段时间后甲才出发,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),yt的函数关系如图1所示,其中点C的坐标为(,),请解决以下问题:

(1)甲比乙晚出发几小时?

(2)分别求出甲、乙二人的速度;

(3)丙骑摩托车与乙同时出发,从N地沿同一条公路匀速前往M地,若丙经过h与乙相遇.

①设丙与M地的距离为S(km),行驶的时间为t(h),求St之间的函数关系式(不用写自变量的取值范围)

②丙与乙相遇后再用多少时间与甲相遇.

查看答案和解析>>

同步练习册答案