【题目】如图,直线l1∥l2∥l3 , 一等腰直角三角形ABC的三个顶点A,B,C分别在l1 , l2 , l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则 的值为( )
A.
B.
C.
D.
【答案】A
【解析】解:如图,作BF⊥l3 , AE⊥l3 ,
∵∠ACB=90°,
∴∠BCF+∠ACE=90°,
∵∠BCF+∠CFB=90°,
∴∠ACE=∠CBF,
在△ACE和△CBF中,
,
∴△ACE≌△CBF,
∴CE=BF=3,CF=AE=4,
∵l1与l2的距离为1,l2与l3的距离为3,
∴AG=1,BG=EF=CF+CE=7
∴AB= =5 ,
∵l2∥l3 ,
∴ =
∴DG= CE= ,
∴BD=BG﹣DG=7﹣ = ,
∴ = .
故选A.
先作出作BF⊥l3 , AE⊥l3 , 再判断△ACE≌△CBF,求出CE=BF=3,CF=AE=4,然后由l2∥l3 , 求出DG,即可.
科目:初中数学 来源: 题型:
【题目】如图,直线y1=﹣ x+2与x轴,y轴分别交于B,C,抛物线y=ax2+bx+c(a≠0)经过点A,B,C,点A坐标为(﹣1,0).
(1)求抛物线的解析式;
(2)抛物线的对称轴与x轴交于点D,连接CD,点P是直线BC上方抛物线上的一动点(不与B,C重合),当点P运动到何处时,四边形PCDB的面积最大?求出此时四边形PCDB面积的最大值和点P坐标;
(3)在抛物线上的对称轴上是否存在一点Q,使△QCD是以CD为腰的等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若CD=2AD,⊙O的直径为20,求线段AC、AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在( )
A.点A处 B.点B处 C.点C处 D.点E处
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.
(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有人;
(2)请你将条形统计图补充完成;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明用尺规作图作△ABC边AC上的高BH,作法如下:
①分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于F;
②作射线BF,交边AC于点H;
③以B为圆心,BK长为半径作弧,交直线AC于点D和E;
④取一点K,使K和B在AC的两侧;
所以,BH就是所求作的高. 其中顺序正确的作图步骤是( )
A. ①②③④ B. ④③②① C. ②④③① D. ④③①②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字﹣1,2,5,;乙袋中装有3个完全相同的小球,分别标有数字3,﹣5,﹣7;小宇从甲袋中随机摸出一个小球,记下数字为m,小惠从乙袋中随机摸出一个小球,记下的数字为n.
(1)若点Q的坐标为(m,n),求点Q在第四象限的概率;
(2)已知关于x的一元二次方程2x2+mx+n=0,求该方程有实数根的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com