精英家教网 > 初中数学 > 题目详情

【题目】通过学习锐角三角比,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化。类似的,可以在等腰三角形中建立边角之间的联系。我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can).

如图(1)在中,,底角的邻对记作,这时,容易知道一个角的大小与这个角的邻对值也是一一对应的.根据上述角的邻对的定义解下列问题:

1=

2)如图(2),在中,,求的周长

【答案】1can30°=;(2ABC的周长=

【解析】

1)过点AADBC于点D,根据∠B=30°,可得出BD= AB,结合等腰三角形的性质可得出BC= AB,继而得出canB

2)过点AAEBC于点E,根据canB= ,设BC=8xAB=5x,再由SABC=24,可得出x的值,继而求出周长.

1(1)过点AADBC于点D

∵∠B=30°

cosB= =

BD= AB

∵△ABC是等腰三角形,

BC=2BD=AB

can30°= =

2)∵在ABC中, canB ,∴

过点AAE垂足为点E

AB=AC

ABC的周长=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解不等式组请结合题意填空,完成本题的解答.

(Ⅰ)解不等式①,得_______________;

(Ⅱ)解不等式②,得_______________;

(Ⅲ)把不等式①和②的解集在数轴上表示出来:

(Ⅳ)原不等式组的解集为______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:

①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.

其中正确的有(  )

A. 4个 B. 3个 C. 2个 D. 1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为m2),种草所需费用1(元)与m2)的函数关系式为,其图象如图所示:栽花所需费用2(元)与x(m2)的函数关系式为2=﹣0.012﹣20+300000≤≤1000).

(1)请直接写出k1k2和b的值;

(2)设这块1000m2空地的绿化总费用为W(元),请利用W与的函数关系式,求出绿化总费用W的最大值;

(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2﹣2x+3.

(1)把函数关系式配成顶点式并求出图象的顶点坐标和对称轴.

(2)若图象与x轴交点为A.B,与y轴交点为C,求A、B、C三点的坐标;

(3)在图中画出图象.并求出△ABC面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BE平分ABC交AC于点E,过点E作EDBC交AB于点D.

(1)求证:AEBC=BDAC;

(2)如果=3,=2,DE=6,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴正半轴交于点A30).以OA为边在轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF,则= ,点E的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点 .下列说法正确的是(  )

A. 与△ABC是位似图形,位似中心是点(1,0)

B. 与△ABC是位似图形,位似中心是点(0,0)

C. 与△ABC是相似图形,但不是位似图形

D. 与△ABC不是相似图形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在⊙O中,AB=4 AF=6AC是直径,ACBDF,图中阴影部分的面积是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案