精英家教网 > 初中数学 > 题目详情

【题目】如图,平分,且交于点平分,且交于点相交于点,连接

1)求证:四边形是菱形.

2)若,求的长.

【答案】1)见解析;(2AD

【解析】

1)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出ABBCAD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出结论;

2)根据菱形的性质可得∠AOD90°OD3,然后在RtAOD中利用勾股定理列方程求出AO即可解决问题.

1)证明:∵AEBF

∴∠ADB=∠DBC,∠DAC=∠BCA

ACBD分别是∠BAD、∠ABC的平分线,

∴∠DAC=∠BAC,∠ABD=∠DBC

∴∠BAC=∠ACB,∠ABD=∠ADB

ABBCABAD

ADBC

ADBC

∴四边形ABCD是平行四边形,

ADAB

∴平行四边形四边形ABCD是菱形;

2)∵四边形ABCD是菱形,BD6

∴∠AOD90°OD3

AD2AO

RtAOD中,AD2AO2OD2,即4AO2AO29

AO

AD2AO

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,M经过原点O(0,0),点A,0)与点B(0,﹣1),点D在劣弧OA上,连接BDx轴于点C,且∠COD=∠CBO

(1)请直接写出M的直径,并求证BD平分∠ABO

(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与M相切,求此时点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=ACDBC的中点,连结AD,在AD的延长线上取一点E,连结BECE.

(1)求证:ABE≌△ACE

(2)当AEAD满足什么数量关系时,四边形ABEC是菱形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2﹣2x+m+1x轴交于A(x1 , 0)、B(x2 , 0)两点,且x1<0,x2>0,与y轴交于点C,顶点为P.(提示:若x1 , x2是一元二次方程ax2+bx+c=0(a≠0)的两个实根,则x1+x2=﹣ ,x1x2=

(1)m的取值范围;

(2)OA=3OB,求抛物线的解析式;

(3)(2)中抛物线的对称轴PD上,存在点Q使得△BQC的周长最短,试求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O 为原点,点 A(4,0),点 B(0,3),把△ABO 绕点 B 逆时针旋转,得△A′BO′,点 A、O 旋转后的对应点为 A′、O′,记旋转角为ɑ.

(1)如图 1,若ɑ=90°,求 AA′的长;

(2)如图 2,若ɑ=120°,求点 O′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为满足市场需求,新生活超市在端午节前夕购进价格为3/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线,若abc满足b=a+c,则称抛物线恒定抛物线.

1)求证:恒定抛物线必过x轴上的一个定点A

2)已知恒定抛物线的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C恒定抛物线,使得以PACQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O 中,AB、CD是互相垂直的两条直径,点E上,CF⊥AE 于点F,若点F四等分弦AE,且AE=8,则⊙O 的面积为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为(  )

A. 15 B. 18 C. 21 D. 24

查看答案和解析>>

同步练习册答案