精英家教网 > 初中数学 > 题目详情

【题目】如图等腰直角△ABCABC=90°,PAC将△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ

1)求∠PCQ的度数

2)当AB=4APPC=13PQ的大小

3)当点P在线段AC上运动时(P不与A重合)请写出一个反映PA2PC2PB2之间关系的等式并加以证明.

【答案】190°;(22;(32PB2=PA2+PC2

【解析】

1)由于∠PCB=BCQ=45°,故有∠PCQ=90°.

2)由等腰直角三角形的性质知,AC=4,根据已知条件,可求得APPC的值,再由勾股定理求得PQ的值.

3)由于△PBQ也是等腰直角三角形,故有PQ2=2PB2=PA2+PC2

1)由题意知,△ABP≌△CQB

∴∠A=ACB=BCQ=45°,ABP=CPQAP=CQPB=BQ

∴∠PCQ=ACB+∠BCQ=90°,ABP+∠PBC=CPQ+∠PBC=90°,

∴△BPQ是等腰直角三角形,△PCQ是直角三角形.

2)当AB=4APPC=13时,有AC=4AP=PC=3

PQ==2

3)存在2PB2=PA2+PC2,由于△BPQ是等腰直角三角形,

PQ=PB

AP=CQPQ2=PC2+CQ2=PA2+PC2

故有2PB2=PA2+PC2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为庆祝春节,市政府决定在市政广场上增一排灯花,其设计由以下图案逐步演变而成,其中圆圈代表灯花中的灯泡,n代表第n次演变过程,s代表第n次演变后的灯泡的个数,仔细观察下列演变过程,当n=7时,s= ).

A.162B.176C.190D.214

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将图中的正方形剪开得到图,图中共有4个正方形;将图中一个正方形剪开得到图,图中共有7个正方形;将图中一个正方形剪开得到图,图中共有10个正方形……如此下去,则第2018个图中共有正方形的个数为( )

A.2018B.6049C.6052D.6055

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小张第一次用180元购买了8套儿童服装,以一定价格出售.如果以每套儿童服装80元的价格为标准,超出的记作整数,不足的记作负数,记录如下(单位:元):

请通过计算说明

(1)小张卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?

(2)每套儿童服装的平均售价是多少元?

(3)小张第二次用第一次的进价再次购买900元的儿童服装,如果他预计第二次每套服装的平均售价75元,按他的预计第二次售价可获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD为正方形,E为BC上一点,将正方形折叠,使A点与E点重合,折痕为MN,若tan∠AEN=,DC+CE=10.

(1)求△ANE的面积;

(2)求sin∠ENB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,之间的距离为3, 之间的距离为6, 分别等边三角形的三个顶点,则此三角形的边长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴、轴分别交于两点,的中点,上一点,四边形是菱形,则面积为___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求证:四边形ABCD是矩形.

(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在三角形纸片ABC中,∠A90°,∠C30°,AC10cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为_____cm

查看答案和解析>>

同步练习册答案