精英家教网 > 初中数学 > 题目详情

【题目】在三角形纸片ABC中,∠A90°,∠C30°,AC10cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为_____cm

【答案】40

【解析】

利用30°角直角三角形的性质,首先根据勾股定理求出DE的长,再分两种情形分别求解即可解决问题;

如图1中,

,设

中,

如图2中,当时,沿着直线EF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长

如图中,当时,沿着直线DF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长

综上所述,满足条件的平行四边形的周长为

故答案为为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图等腰直角△ABCABC=90°,PAC将△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ

1)求∠PCQ的度数

2)当AB=4APPC=13PQ的大小

3)当点P在线段AC上运动时(P不与A重合)请写出一个反映PA2PC2PB2之间关系的等式并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,CDAB,垂足为D. EBC上,EFAB,垂足为F,∠1=2.

(1)试说明DGBC的理由;

(2)如果∠B54°,且∠ACD=35°,求的∠3度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).

(1)此时小强头部E点与地面DK相距多少?

(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?

(sin80°≈0.98,cos80°≈0.17, ≈1.41,结果精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学学习中,及时对知识进行归纳和整理是提高学习效率的重要方法,善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,对照图形,把相关知识归纳整理如下:

一次函数与方程(组)的关系:

1)一次函数的解析式就是一个二元一次方程;

2)点B的横坐标是方程kx+b=0的解;

3)点C的坐标(xy)中xy的值是方程组①的解.

一次函数与不等式的关系:

1)函数y=kx+b的函数值y大于0时,自变量x的取值范围就是不等式kx+b0的解集;

2)函数y=kx+b的函数值y小于0时,自变量x的取值范围就是不等式②的解集.

(一)请你根据以上归纳整理的内容在下面的数字序号后写出相应的结论:① ;②

(二)如果点B坐标为(20),C坐标为(13);

①直接写出kx+b≥k1x+b1的解集;

②求直线BC的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索规律:将连续的偶2468,排成如表:

1)请你求出十字框中的五个数的和;

2)设中间的数为x,请你用含x的式子表示十字框中的五个数的和;

3)若将十字框上下左右移动,可框住另外的五个数,这五个数的和能等于2018吗?如能,写出这五个数,如不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了打造铁力旅游景点,市旅游局打算将依吉密河中一段长1800米的河道整治任务交由甲、乙两个工程队来完成.已知,甲工程队每天整治60米,乙工程队每天整治40米.

(1)若甲、乙两个工程队接龙来完成,共用时35天,求甲、乙两个工程队分别整治多长的河道?

(2)若乙工程队先整治河道10天,甲工程队再参加两个工程队一起来完成剩余河道整治任务,求整段河道整治任务共用时多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线ABx轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t0).

(1)求直线AB的解析式;

(2)在点POA运动的过程中,求△APQ的面积St之间的函数关系式(不必写出t的取值范围);

(3)在点EBO运动的过程中,完成下面问题:

①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;

②当DE经过点O时,请你直接写出t的值.

【答案】(1)直线AB的解析式为;(2)S=﹣t2+t;

(3)四边形QBED能成为直角梯形.①t=②当DE经过点O时,t=

【解析】分析:(1)首先由在RtAOB,OA=3,AB=5,求得OB的值,然后利用待定系数法即可求得一次函数的解析式;
(2)过点QQFAO于点F.由△AQF∽△ABO,根据相似三角形的对应边成比例,借助于方程即可求得QF的长,然后即可求得的面积St之间的函数关系式;
(3)①分别从DEQBPQBO去分析,借助于相似三角形的性质,即可求得t的值;
②根据题意可知即时,则列方程即可求得t的值.

详解:(1)RtAOB,OA=3,AB=5,由勾股定理得

A(3,0),B(0,4).

设直线AB的解析式为y=kx+b.

.解得

∴直线AB的解析式为

(2)如图1,过点QQFAO于点F.

AQ=OP=tAP=3t.

由△AQF∽△ABO,

(3)四边形QBED能成为直角梯形,

①如图2,DEQB时,

DEPQ

PQQB,四边形QBED是直角梯形.

此时

由△APQ∽△ABO,

解得

如图3,PQBO时,

DEPQ

DEBO,四边形QBED是直角梯形.

此时

由△AQP∽△ABO,

3t=5(3t),

3t=155t

8t=15,

解得

(PA0运动的过程中还有两个,但不合题意舍去).

②当DE经过点O时,

DE垂直平分PQ

EP=EQ=t

由于PQ相同的时间和速度,

AQ=EQ=EP=t

∴∠AEQ=EAQ

∴∠BEQ=EBQ

BQ=EQ

所以

PAO运动时,

过点QQFOBF

EP=6t,

EQ=EP=6t

AQ=tBQ=5t

解得:

∴当DE经过点O, .

点睛:本题考查知识点较多,勾股定理,待定系数法求一次函数解析式,相似三角形的判定与性质等知识点,熟练掌握和运用各个知识点是解题的关键.

型】解答
束】
21

【题目】如图,反比例函数y(m0)与一次函数y=kx+b(k0)的图象相交于A、B两点,点A的坐标为(-6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.

查看答案和解析>>

同步练习册答案