精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,∠ACB=90°AC=15BC=9,点P是线段AC上的一个动点,连接BP,将线段BP绕点P逆时针旋转90°得到线段PD,连接AD,则线段AD的最小值是______

【答案】3

【解析】

如图,过点DDEACE,有旋转的性质可得DP=BP,∠DPB=90°,由“AAS”可证DEP≌△PCB,可得DE=CPEP=BC=9,可求AE+DE=6,由勾股定理和二次函数的性质可求解.

如图,过点DDEACE

∵将线段BP绕点P逆时针旋转90°得到线段PD

DP=BP,∠DPB=90°

∴∠DPE+BPC=90°,且∠BPC+PBC=90°

∴∠DPE=PBC,且DP=BP,∠DEP=C=90°

∴△DEP≌△PCBAAS

DE=CPEP=BC=9

AE+PC=AC-EP=6

AE+DE=6

AD2=AE2+DE2

AD2=AE2+6-AE2

AD2=2AE-32+18

AE=3时,AD有最小值为3

故答案为3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,

(1)求证:△ACE≌△BCD;

(2)若DE=13,BD=12,求线段AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】高高的路灯挂在路边的上方,高傲而明亮,小明拿着一根2米长的竹竿,想量一量路灯的高度,直接量是不可能的.于是,他走到路灯旁的一个地方,竖起竹竿(即AE),这时,他量了一下竹竿的影长(AC)正好是1米,他沿着影子的方向走,向远处走出两根竹竿的长度(即AB=4米),他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即BD=2米).此时,小明抬头瞧瞧路灯,若有所思地说:噢,我知道路灯有多高了!同学们,请你和小明一起解答这个问题:

(1)在图中作出路灯O的位置,并作OP⊥lP.

(2)求出路灯O的高度,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y=﹣x+b的图象过点A(0,3),点p是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON上分别截取:PC=MP,MB=OM,OE=ON,ND=NP.

(1)b=  

(2)求证:四边形BCDE是平行四边形;

(3)在直线y=﹣x+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,请求出所有符合的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l1y=x+6y轴交于点B,直线l2y=kx+6x轴交于点A,且直线l1与直线l2相交所形成的角中,其中一个角的度数是75°,则线段AB的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学开展数学史知识竞赛活动,八年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.

1)请计算八(1)班、八(2)班两个班选出的5名选手复赛的平均成绩;

2)请判断哪个班选出的5名选手的复赛成绩比较稳定,并说明理由?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,点O为坐标原点,经过A(-26)的直线交x轴正半轴于点B,交y轴于点COB=OC,直线ADx轴负半轴于点D,若ABD的面积为27

1)求直线AD的解析式;

2)横坐标为m的点PAB上(不与点AB重合),过点Px轴的平行线交AD于点E,设PE的长为yy≠0),求ym之间的函数关系式并直接写出相应的m的取值范围;

3)在(2)的条件下,在x轴上是否存在点F,使PEF为等腰直角三角形?若存在求出点F的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读与应用:

阅读1:ab为实数,且a>0,b>0,因为,所以,从而(当ab时取等号).

阅读2:函数(常数m>0,x>0),由阅读1结论可知: ,所以当时,函数的最小值为

阅读理解上述内容,解答下列问题:

问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为,求当x=__________时,周长的最小值为__________.

问题2:已知函数y1x+1(x>-1)与函数y2x2+2x+17(x>-1),当x=__________时, 的最小值为__________.

问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的顶点AB的坐标分别为(-40)和(20),BC=.设直线AC与直线x=4交于点E

1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E

2)设(1)中的抛物线与x轴的另一个交点为NM是该抛物线上位于CN之间的一动点,求△CMN面积的最大值.

查看答案和解析>>

同步练习册答案