精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC是等边三角形,AB=3,EAC上且AE=AC,D是直线BC上一动点,线段ED绕点E逆时针旋转900,得到线段EF,当点D运动时,则线段AF的最小值是_______

【答案】

【解析】

DMACM,FNACN,如图,设DM=x,则CM=x,可计算出EM=-x+1,再利用旋转的性质得到ED=EF,DEF=90°,证明EDM≌△FEN得到DM=FN=x,EM=NF=-x+1,接着利用勾股定理得到AF2=(-x+1)2+(2+x)2,配方得到AF2= (x-2+,然后利用非负数的性质得到AF的最小值.

解:作DMACM,FNACN,如图,

DM=x,

RtCDM中,CM=DM=x,

EM+x=1,

EM=-x+1,

∵线段ED绕点E逆时针旋转90°,得到线段EF,

ED=EF,DEF=90°,

可得EDM≌△FEN,

DM=FN=x,EM=NF=-x+1,

RtAFN中,AF2=(-x+1)2+(2+x)2=(x-2+

x=时,AF2有最小值

AF的最小值为.

故答案为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.

(1)求证:△BDG∽△DEG;

(2)若EGBG=4,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2﹣2axx轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是﹣1.

(1)求k,a,b的值;

(2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;

(3)在(2)的条件下,当PBCD时,点Q是直线AB上一点,若∠BPQ+CBO=180°,求Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知中,厘米,厘米,点的中点.

1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1秒后,是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等, 是否可能全等?若能,求出全等时点Q的运动速度和时间;若不能,请说明理由.

2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:

(1)求抛物线的解析式.

(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:中,

如图1,若,且,求AD的长;

如图2,请利用没有刻度的直尺和圆规,在线段AB上找一点F,使得点F到边AC的距离等于注:不写作法,保留作图痕迹,对图中涉及到的点用字母进行标注

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地区遭受严重的自然灾害,空军某部队奉命赶灾区空投物资,已知空投物资离开飞机后在空中沿抛物线降落,抛物线顶点为机舱航口,如图所示,如果空投物资离开处后下落的垂直高度米时,它测处的水平距离米,那么要使飞机在垂直高度米的高空进行空投,物资恰好准确地落在居民点处,飞机到处的水平距离应为________米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等.无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的(

A. B. C. D.

查看答案和解析>>

同步练习册答案