分析 找出点M关于直线l在坐标轴上的对称点E、F,如图所示.求出点E、F的坐标,然后分别求出ME、MF中点坐标,最后分别求出时间t的值.
解答 解:如图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.
过点M作MD⊥x轴于点D,则OD=3,MD=2.![]()
由直线l:y=-x+b可知∠PDO=∠OPD=45°,
∴∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,
∴DE=MD=2,OE=OF=1,
∴E(1,0),F(0,-1).
∵M(3,2),F(0,-1),
∴线段MF中点坐标为($\frac{3}{2}$,$\frac{1}{2}$).
直线y=-x+b过点($\frac{3}{2}$,$\frac{1}{2}$),则$\frac{1}{2}$=-$\frac{3}{2}$+b,解得:b=2,
∴t=2.
∵M(3,2),E(1,0),
∴线段ME中点坐标为(2,1).
直线y=-x+b过点(2,1),则1=-2+b,解得:b=3,
∴t=3.
故点M关于l的对称点,当t=2时,落在y轴上,当t=3时,落在x轴上.
故答案为2或3.
点评 考查了一次函数的图象与几何变换.注意在x轴、y轴上均有点M的对称点,不要漏解;其次注意点E、F坐标以及线段中点坐标的求法.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com