【题目】2016年共享单车横空出世,较好地解决了人们“最后一公里”出行难的问题.截至2016年年底,“ofo共享单车”的投放数量是“摩拜单车”投放数量的1.6倍,覆盖城市也远超于“摩拜单车”,“ofo共享单车”注册用户量约为960万人,“摩拜单车”的注册用户量约为750万人,据统计,使用一辆“ofo共享单车”的平均人数比使用一辆“摩拜单车”的平均人数少3人,假设注册这两种单车的用户都在使用共享单车.
(1)求2016年“摩拜单车”的投放数量约为多少万台;
(2)摩拜公司决定2018年在某市采取如下投放方式:甲街区每1000人投放a辆“摩拜单车”,乙街区每1000人投放辆“摩拜单车”.按照这种投放方式,甲街区共投放了1500辆,乙街区共投放了1200辆,如果两个街区共有15万人,试求a的值.
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,点E在BC的延长线上,且CE=BC,AE=AB,AE、DC相交于点O,连接DE.
(1)求证:四边形ACED是矩形;
(2)若∠AOD=120°,AC=4,求对角线CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴相交于A(﹣3,0)、B(1,0)两点,与y轴相交于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)求D点坐标;
(2)求二次函数的解析式;
(3)根据图象直接写出使一次函数值小于二次函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下表:
我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.
回答下列问题:
⑴ 第4格的“特征多项式”为 ,第n格的“特征多项式”为 ;
⑵ 若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为-6.
① 求x,y的值;
② 在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象过点(0,3),且与两坐标轴在第一象限所围成的三角形面积为3,则这个一次函数的表达式为( )
A.y=1.5x+3B.y=1.5x-3C.y=-1.5x+3D.y=-1.5x-3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.
(1)求证:△ABE≌△CDF;
(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:
⑴ 当黑砖n=1时,白砖有_______块,当黑砖n=2时,白砖有________块,
当黑砖n=3时,白砖有_______块.
⑵ 第n个图案中,白色地砖共 块.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数(x>0)的图象上,点D的坐标为(4,3).设AB所在的直线解析式为,若将菱形ABCD沿x轴正方向平移m个单位,
①当菱形的顶点B落在反比例函数的图象上,求m的值;
②在平移中,若反比例函数图象与菱形的边AD始终有交点,求m的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上,将剪下的扇形作为一个圆锥侧面,如果圆锥的高为,则这块圆形纸片的直径为( )
A. 12cm B. 20cm C. 24cm D. 28cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com