精英家教网 > 初中数学 > 题目详情

【题目】某地下管道若由甲队单独铺设恰好在规定时间内完成;若由乙队单独铺设需要超过规定时间15天才能完成如果先由甲、乙两队合做10再由乙队单独铺设正好按时完成.

(1)这项工程的规定时间是多少天?

(2)已知甲队每天的施工费用为5000乙队每天的施工费用为3000为了缩短工期以减少对居民交通的影响工程指挥部最终决定该工程由甲、乙两队合做来完成那么该工程施工费用是多少?

【答案】(1)这项工程的规定时间是30;(2)该工程的费用为144000元.

【解析】

1)设这项工程的规定时间是x天,根据题意得:(+)×10+=1.解方程可得;(2)该工程由甲、乙队合做完成,所需时间为:1÷+=18(天),则该工程施工费用是:18×(5000+3000)元.

(1)设这项工程的规定时间是x天,根据题意得:

+×10+=1.

解得:x=30.

经检验x=30是原分式方程的解.

答:这项工程的规定时间是30天.

(2)该工程由甲、乙队合做完成,所需时间为:1÷+)=18(天),

则该工程施工费用是:18×(5000+3000)=144000(元),

答:该工程的费用为144000元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】李叔叔在“中央山水”买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面(由四个长方形组成)如图所示(图中长度单位:米),请解答下问题:

1)用式子表示这所住宅的总面积;

2)若铺1平方米地砖平均费用120元,求当x=6时,这套住宅铺地砖总费用为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,每个小立方体的棱长为1,图1中共有1个立方体,其中1个看得见,0个看不见;图2中共有8个小立方体,其中7个看得见,1个看不见;图3中共有27个小立方体,其中19个看得见,8个看不见;……;则第10个图形中,其中看得见的小立方体个数是(  )

A. 270 B. 271 C. 272 D. 273

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a是最大的负整数,b、c满足(b﹣3)2+|c+4|=0,且a,b,c分别是点A,B,C在数轴上对应的数.

(1)a,b,c的值,并在数轴上标出点A,B,C;

(2)若动点PC出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?

(3)在数轴上找一点M,使点MA,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,图①是边长为1的等边三角形纸板,周长记为C1,沿图①的底边剪去一块边长为的等边三角形,得到图②,周长记为C2,然后沿同一底边依次剪去一块更小的等边三角形纸板(即其边长为前一块被剪掉等边三角形纸板边长的),得图③④,图n的周长记为Cn,若n≥3,则Cn-Cn-1=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:

指数运算

21=2

22=4

23=8

31=3

32=9

33=27

新运算

log22=1

log24=2

log28=3

log33=1

log39=2

log327=3

根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2 =﹣1.其中正确的是(  )
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某快递公司有甲、乙、丙三个机器人分配快件,甲单独完成需要x小时,乙单独完成需要y小时,丙单独完成需要z小时.

(1)求甲单独完成的时间是乙丙合作完成时间的几倍?

(2)若甲单独完成的时间是乙丙合作完成时间的a倍,乙单独完成的时间是甲丙合作完成时间的b倍,丙单独完成的时间是甲乙合作完成时间的c倍,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知射线 OC 在∠AOB 的内部,射线 OE 平分∠AOC,射线 OF 平分∠COB

(1)如图 1,若∠AOB=100°,∠AOC=32°,则∠EOF= 度;

(2)若∠AOB=α,∠AOC=β

①如图 2,若射线 OC 在∠AOB 的内部绕点 O 旋转,求∠EOF 的度数;

②若射线 OC 在∠AOB 的外部绕点 O 旋转(旋转中∠AOC、∠BOC 均是指小于 180°的角),其余条件不变,请借助图 3 探究∠EOF 的大小,直接写出∠EOF 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的材料:

在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数yk1xb1k1≠0)的图象为直线l1,一次函数yk2xb2k2≠0)的图象为直线l2,若k1k2,且b1≠b2,我们就称直线l1与直线l2互相平行.

解答下面的问题:

1)求过点P14)且与已知直线y=-2x1平行的直线的函数表达式,并画出直线l的图象;

2)设直线l分别与y轴、x轴交于点AB,如果直线ykxt ( t0)与直线l平行且交x轴于点C,求出△ABC的面积S关于t的函数表达式.

查看答案和解析>>

同步练习册答案