精英家教网 > 初中数学 > 题目详情

【题目】慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD1.7米,他站在D处测得塔顶的仰角∠ACG45°,小琴的目高EF1.5米,她站在距离塔底中心Ba米远的F处,测得塔顶的仰角∠AEH62.3°.(DBF在同一水平线上,参考数据:sin62.3°≈0.89cos62.3°≈0.46tan62.3°≈1.9)

(1)求小亮与塔底中心的距离BD(用含a的式子表示)

(2)若小亮与小琴相距52米,求慈氏塔的高度AB.

【答案】(1)小亮与塔底中心的距离BD(1.9a0.2)米;(2)慈氏塔的高度AB36.1.

【解析】

(1)由题意得,四边形CDBGHBFE为矩形,求得GH0.2,在RtAHE中,利用∠AEH的正切求得AH≈1.9a,从而得AG1.9a0.2,在RtACG中,根据等腰直角三角形的性质求得CGAG1.9a0.2,由此即可求得答案;

(2)由题意可得关于a的方程,解方程求得a的值即可得答案.

(1)由题意得,四边形CDBGHBFE为矩形,

GBCD1.7HBEF1.5

GH0.2

RtAHE中,tanAEH

AHHEtanAEH≈1.9a

AGAHGH1.9a0.2

RtACG中,∠ACG45°

CGAG1.9a0.2

BD1.9a0.2

答:小亮与塔底中心的距离BD(1.9a0.2)米;

(2)由题意得,1.9a0.2+a52

解得,a18

AG1.9a0.234.4

ABAG+GB36.1

答:慈氏塔的高度AB36.1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:

2013

2014

2015

2016

投入技改资金(万元)

2.5

3

4

4.5

产品成本(万元/件)

7.2

6

4.5

4

1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;

2)按照这种变化规律,若2017年已投入资金5万元.

①预计生产成本每件比2016年降低多少万元?

②若打算在2017年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从共享单车、共享汽车等共享出行到共享充电宝、共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者,小宇上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为ABCD的四张卡片(除编号和内容外,其余完全相同),将这四张卡片背面朝上,洗匀放好.

1)从中随机抽取一张,求刚好抽到“共享服务”的概率.

2)从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号ABCD表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EFBE交CD于F.

(1)求证:ABE∽△DEF;

(2)求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰ABC中,AB=ACA=36°,作底角ABC的平分线BDAC于点D,易得等腰BCD,作等腰BCD底角BCD的平分线CE,交BD于点E,得等腰CDE,再作等腰CDE底角CDE的平分线DF,交于CE于点F,若已知AB=bBC=a,记ABC为第一个等腰三角形,BCD为第二个等腰三角形,则的值为_____;第n个等腰三角形的底边长为_____.(含有b的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD是正方形,EF分别是DCCB的延长线上的点,且DE=BF,连接AEAFEF

1)求证:△ADE≌△ABF

2△ABF可以由△ADE绕旋转中心________点,按顺时针方向旋转________度得到;

3)若BC=8DE=3,求△AEF的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1AB=10AE=15.(i=1是指坡面的铅直高度BH与水平宽度AH的比)

1)求点B距水平面AE的高度BH

2)求广告牌CD的高度.

(测角器的高度忽略不计,结果精确到0.1.参考数据:1.4141.732

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD为O的直径,弦ABCD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意,CD长为(

A.12寸 B.13寸 C.24寸 D.26寸

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,⊙C的半径为r,给出如下定义:若点P的横、纵坐标均为整数,且到圆心C的距离dr,则称P为⊙C 的关联整点.

1)当⊙O的半径r=2时,在点D2-2),E-10),F02)中,为⊙O的关联整点的是

2)若直线上存在⊙O的关联整点,且不超过7个,求r的取值范围;

3)⊙C的圆心在x轴上,半径为2,若直线上存在⊙C的关联整点,求圆心C的横坐标t的取值范围.

查看答案和解析>>

同步练习册答案