【题目】如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于F.
(1)求证:△ABE∽△DEF;
(2)求EF的长.
【答案】(1)证明见解析(2)
【解析】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠AEB+∠ABE=90°。
∵EF⊥BE,∴∠AEB+∠DEF=90°,∴∠DEF=∠ABE。
∴△ABE∽△DEF。
(2)解:∵△ABE∽△DEF,∴。
∵AB=6,AD=12,AE=8,∴,DE=AD-AE=12-8=4。
∴,解得:。
(1)由四边形ABCD是矩形,易得∠A=∠D=90°,又由EF⊥BE,利用同角的余角相等,即可得∠DEF=∠ABE,则可证得△ABE∽△DEF。
(2)由(1)△ABE∽△DEF,根据相似三角形的对应边成比例,即可得 ,又由AB=6,AD=12,AE=8,利用勾股定理求得BE的长,由DE=AB-AE,求得DE的长,从而求得EF的长。
科目:初中数学 来源: 题型:
【题目】随着互联网经济的发展,“共享单车“越来越走近老百姓的生活.赵刚同学对某站点”共享单车”的租用情况进行了调查,将该站点一天中市民每次租用“其享单车“的时间t(单位:分)(t≤120)分成A,B,C,D四个组,进行各组人次统计,并绘制了如下的统计图(不完整).请根据图中信息解答下列问题:
(1)该站点一天中租用”共享单车“的总人次为 ,表示A的扇形圆心角的度数是 .
(2)补全条形统计图.
(3)“共享单车”服务公司规定:市民每次使用共享单车时间不超过30分钟收费1元,超过30分钟收费2元,已知该市每天租用共享单车(时间在2小时以内)的市民平均约有5000人次,根据以上数据估计共享单车服务公司每天大约收入多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一件商品的包装盒是一个长方体(如图1),它的宽和高相等.小明将四个这样的包装盒放入一个长方体大纸箱中,从上面看所得图形如图2所示,大纸箱底面长方形未被覆盖的部分用阴影表示.接着小明将这四个包装盒又换了一种摆放方式,从上面看所得图形如图3所示,大纸箱底面未被覆盖的部分也用阴影表示.
设图1中商品包装盒的宽为a,则商品包装盒的长为___________,图2中阴影部分的周长与图3中阴影部分的周长的差为____________(都用含a的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的对角线AC的垂直平分线与对角线AC交于点O,与边AD、BC分别交于点E、F,那么四边形AFCE是不是菱形?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形.若存在,请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到 达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
让我们来规定一种运算:,
例如:,再如:
按照这种运算的规定:请解答下列各个问题:
① ;
② 当= 时, =0;
③ 将下面式子进行因式分解: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴交于点(1,0)和点,与轴交于点,对称轴为直线=1.
(1)求点的坐标(用含的代数式表示)
(2)连接、,若△的面积为6,求此抛物线的解析式;
(3)在(2)的条件下,点为轴正半轴上的一点,点与点,点与点关于点成中心对称,当△为直角三角形时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学在查阅大数学家高斯的资料时,知道了高斯如何求1+2+3+…+100.小明于是对从1开始连续奇数的和进行了研究,发现如下式子:
第1个等式: ;第2个等式: ;第3个等式:
探索以上等式的规律,解决下列问题:
(1) ;
(2)完成第个等式的填空: ;
(3)利用上述结论,计算51+53+55+…+109 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com