【题目】某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:
年 度 | 2013 | 2014 | 2015 | 2016 |
投入技改资金(万元) | 2.5 | 3 | 4 | 4.5 |
产品成本(万元/件) | 7.2 | 6 | 4.5 | 4 |
(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;
(2)按照这种变化规律,若2017年已投入资金5万元.
①预计生产成本每件比2016年降低多少万元?
②若打算在2017年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).
【答案】(1);(2)①比年降低万元.②还需要投入技改资金约万元.
【解析】试题分析:(1)从题很容易看出x与y的乘积为定值,应为反比例关系,由此即可解决问题;
(2)①直接把x=5万元代入函数解析式即可求解;
②直接把y=3.2万元代入函数解析式即可求解;
试题解析:(1)设,( 为常数, )
∴,解这个方程组得,
∴.
当时, .
∴一次函数不能表示其变化规律. ……………………………………(2分)
设,( 为常数, ),∴,
∴,∴.
当时, ;当时, ;当时, ;
∴所求函数为反比例函数……………………………………(5分)
(2)①当时, ; (万元)
∴比年降低万元. ……………………………………(7分)
②当时, ; (万元)
∴还需要投入技改资金约万元. ……………………………………(9分)
答:要把每件产品的成本降低到万元,还需投入技改资金约万元.
科目:初中数学 来源: 题型:
【题目】如图1:在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连结BE,CD,点M、N、P分别是BE、CD、BC的中点.
(1)观察猜想
图1中△PMN的形状是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列一元一次方程解答下列问题:
(1)义乌市为了搞好“五水共治”工作,将一段长为的河道任务交由甲乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治,乙工程队每天整治,试求甲乙两个工程队分别整治了多长的河道.
(2)小玲在数学书上发现如图所示的题目,两个方框表示的是同一个数,请你帮小玲求出方框所表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正确的是( )
A. ①②③④ B. ②③ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2
证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a.
∵S四边形ADCB=S△ACD+S△ABC=b2+ab.
又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)
∴b2+ab=c2+a(b﹣a)
∴a2+b2=c2
请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2
证明:连结______,过点B作________,则____________.
∵S五边形ACBED=S△ACB+S△ABE+S△ADE=____________.
又∵S五边形ACBED=______________=ab+c2+a(b﹣a),
∴___________________=ab+c2+a(b﹣a),
∴a2+b2=c2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4.若用想x,y表示直角三角形的两直角边(x>y),则下列四个说法:①,②x-y=2,③2xy+4=49,④x+y=9其中说法正确的是( )
A. ①②B. ①②③④C. ②④D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知m≥2,n≥2,且m,n均为正整数,如果将mn进行如图所示的“分解”,那么下列四个叙述中正确的有__________(只需填序号).
①在25的“分解”中最大的数是11.
②在43的“分解”中最小的数是13.
③若m3的“分解”中最小的数是23,则m=5.
④若3n的“分解”中最小的数是79,则n=5.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com