【题目】如图1:在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连结BE,CD,点M、N、P分别是BE、CD、BC的中点.
(1)观察猜想
图1中△PMN的形状是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由.
【答案】(1)等边三角形;(2)△PMN的形状不发生改变,仍为等边三角形.
【解析】分析:(1)由等边三角形的性质,得到AB=BC=AC,∠A=∠ABC=∠ACB=60°.由AD=AE,得到BD=EC.由中位线的性质,得到NP∥BD,BD=2NP,进而有∠NPC=∠ABC=60°,BD=2NP.
同理有EC=2MP,∠MPB=∠ECB=60°,得到MP=NP,∠MPN=180°-∠MPB-∠NPC=60°,即可得到结论.
(2)连接BD,CE.易证△ABD≌△ACE,得到BD=CE,∠ABD=∠ACE.由PM是△BCE的中位线,得到PM=CE且PM∥BD.同理可证PN=BD且PN∥BD,得到BD=CE,∠MPB=∠ECB,∠NPC=∠DBC,进而得到∠MPN=60°,即可得到结论.
详解:(1)等边三角形 .理由如下:
∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠ABC=∠ACB=60°.
∵AD=AE,∴BD=EC.
∵N、P分别是DC、BC的中点,∴NP是△BCD的中位线,∴NP∥BD,BD=2NP,∴∠NPC=∠ABC=60°,BD=2NP.
同理可证:EC=2MP,∠MPB=∠ECB=60°.
∴MP=NP,∠MPN=180°-∠MPB-∠NPC=60°,∴△MPN是等边三角形.
(2)△PMN的形状不发生改变,仍为等边三角形.理由如下:
连接BD,CE.
由旋转可得∠BAD=∠CAE.
∵△ABC是等边三角形,∴AB=AC,∠ACB=∠ABC=60°,
∴△ABD≌△ACE,
∴BD=CE,∠ABD=∠ACE.
∵M是BE的中点,P是BC的中点,
∴PM是△BCE的中位线,
∴PM=CE且PM∥BD.
同理可证PN=BD且PN∥BD,
∴BD=CE,∠MPB=∠ECB,∠NPC=∠DBC,
∴∠MPB+∠NPC=∠ECB+∠DBC=(∠ACB+∠ACE)+(∠ABC-∠ABD)= ∠ACB+∠ABC=120°,
∴∠MPN=60°,
∴△PMN是等边三角形.
科目:初中数学 来源: 题型:
【题目】如图,AB为半圆O的直径,C为AO的中点,CD⊥AB交半圆于点D,以C为圆心,CD为半径画弧交AB于E点,若AB=4,则图中阴影部分的面积是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=-x+b与反比例函数y=(x>0)的图象交于点A(2,6)和B(m,1)
(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;
(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学实验室:
我们知道,在数轴上,|a|表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A、B,分别表示有理数a、b,那么A、B两点之间的距离AB=|a-b|.利用此结论,回答以下问题:
(1)数轴上表示1和5的两点之间的距离是______,数轴上表示1和-5的两点之间的距离是______.(1+1分,注意写出最后结果)
(2)式子|x+2|可以看做数轴上表示x和______的两点之间的距离.
(3)式子|x+2|+|x-3|的最小值是______.
(4)当|x+2|+|x-3|取得最小值时,数x的取值范围是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:
(1)填空:甲种收费的函数表达式是 ,乙种收费的函数表达式是 .
(2)请你根据不同的印刷数量帮忙确定选择哪种印刷方式较合算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:对于排好顺序的三个数: 称为数列.将这个数列如下式进行计算: ,,,所得的三个新数中,最大的那个数称为数列的“关联数值”.
例如:对于数列因为所以数列的“关联数值”为6.进一步发现:当改变这三个数的顺序时,所得的数列都可以按照上述方法求出“关联数值”,如:数列的 “关联数值”为0;数列的“关联数值”为3...而对于“”这三个数,按照不同的排列顺序得到的不同数列中,“关联数值"的最大值为6.
(1)数列的“关联数值”为_______;
(2)将“”这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值是_______, 取得“关联数值”的最大值的数列是______
(3)将“”这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值为10,求的值,并写出取得“关联数值”最大值的数列.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:
年 度 | 2013 | 2014 | 2015 | 2016 |
投入技改资金(万元) | 2.5 | 3 | 4 | 4.5 |
产品成本(万元/件) | 7.2 | 6 | 4.5 | 4 |
(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;
(2)按照这种变化规律,若2017年已投入资金5万元.
①预计生产成本每件比2016年降低多少万元?
②若打算在2017年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com