精英家教网 > 初中数学 > 题目详情

【题目】1是一个小朋友玩滚铁环的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为25 cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为AMOA=α,且sinα=

(1)求点M离地面AC的高度BM

(2)设人站立点C与点A的水平距离AC=55 cm,求铁环钩MF的长度.

【答案】(1)BM=5cm;(2)MF=50cm.

【解析】

(1)过M作与AC平行的直线,与OA、FC分别相交于H、N.那么求BM的长就转化为求HA的长,而要求出HA,必须先求出OH,在直角三角形OHM中,sinα的值,且铁环的半径为5个单位即OM=5,可求得HM的值,从而求得HA的值;

(2)因为∠MOH+OMH=OMH+FMN=90°,FMN=MOH,又因为sinMOA=,所以可得出FNFM之间的数量关系,即FN=FM,再根据MN=HN-HM,利用勾股定理即可求出FM的长

M作与AC平行的直线,与OA、FC分别相交于H、N,

(1)在RtOHM中,∠OHM=90°,OM=25,

HM=OM×sinα=15,

所以OH=20,

MB=HA=25-20=5,

所以点M距地面的高度BM5cm;

(2)∵铁环钩与铁环相切,

∴∠MOH+OMH=OMH+FMN=90°,FMN=MOH,

=sinMOA=

FN=FM,

RtFMN中,∠FNM=90°,MN=BC=AC-AB=55-15=40,

FM2=FN2+MN2

FM2=(FM)2+402

解得:FM=50,

∴铁环钩的长度FM50cm.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在OAB中,OA=OB,以点O为圆心的⊙O经过AB的中点C,直线AO与⊙O相交于点E、D,OB交⊙O于点F,P 的中点,连接CE、CF、BP.

(1)求证:AB是⊙O的切线.

(2)若OA=4,则

①当长为_____时,四边形OECF是菱形;

②当 长为_____时,四边形OCBP是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=x2+bx–1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2–2x–1–t=0(t为实数)在–1<x<4的范围内有实数解,则t的取值范围是

A. t≥–2 B. –2≤t<7

C. –2≤t<2 D. 2<t<7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.

(1)求证:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系xOy中,一直线y=2x+b经过点A-10)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OB=OD,过D点作DC⊥x轴交直线y=2x+bC点,反比例函数y=xO)经过点C

1)求bk的值;

2)求△BDC的面积;

3)在反比例函数y=x0)的图象上找一点P(异于点C),使△BDP△BDC的面积相等,求出P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是规格为4×6的边长为1个单位的正方形网格,请在所给网格中按下列要求画顶点在格点的三角形.

1)在图1中画△ABC,且AB=AC=BC=

2)在图2中画一个三边长均为无理数,且各边都不相等的直角△DEF(请注明各边长).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2的正方形ABCD中,PBC边上一动点(点P不与B、C重合),将ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PECD于点N,连接MA、NA,则以下结论:①△CMP∽△BPA;②四边形AMCB的面积最大值为2.5;③△ADN≌△AEN;④线段AM的最小值为2.5;⑤当PBC中点时,AE为线段NP的中垂线.正确的有_____(只填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC=BCDC=EC,∠ACB=ECD=90°,且∠EBD=38°,则∠AEB=

A.52°B.90°C.128°D.38°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=AD,AC=5,DAB=DCB=90°,则四边形ABCD的面积为(  )

A. 15 B. 12.5 C. 14.5 D. 17

查看答案和解析>>

同步练习册答案