【题目】如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.
(1)求点D到BC的距离DH的长;
(2)求y关于x的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
【答案】(1)(2)y=-x+6(3)存在,或6或
【解析】
试题分析:(1)根据三角形相似的判定定理求出△BHD∽△BAC,根据相似三角形的性质求出DH的长;
(2)根据△RQC∽△ABC,根据三角形的相似比求出y关于x的函数关系式;
(3)画出图形,根据图形进行讨论:
①当PQ=PR时,过点P作PM⊥QR于M,则QM=RM.由于∠1+∠2=90°,∠C+∠2=90°,∴∠1=∠C.
∴cos∠1=cosC=,∴,即可求出x的值;
②当PQ=RQ时,﹣x+6=,x=6;
③当PR=QR时,则R为PQ中垂线上的点,于是点R为EC的中点,故CR=CE=AC=2.由于tanC=,x=.
试题解析:(1)在Rt△ABC中,
∵∠A=90°,AB=6,AC=8,
∴BC==10.
∵∠DHB=∠A=90°,∠B=∠B.
∴△BHD∽△BAC,
∴,
∴DH=AC=×8=
(2)∵QR∥AB,
∴∠QRC=∠A=90°.
∵∠C=∠C,
∴△RQC∽△ABC,
∴,∴,
即y关于x的函数关系式为:y=-x+6.
(3)存在,分三种情况:
①当PQ=PR时,过点P作PM⊥QR于M,则QM=RM.
∵∠1+∠2=90°,∠C+∠2=90°,
∴∠1=∠C.
∴cos∠1=cosC=,
∴,
∴,
∴x=.
②当PQ=RQ时,﹣x+6=,
∴x=6.
③作EM⊥BC,RN⊥EM,
∴EM∥PQ,
当PR=QR时,则R为PQ中垂线上的点,
∴EN=MN,
∴ER=RC,
∴点R为EC的中点,
∴CR=CE=AC=2.
∵tanC=,
∴,
∴x=.
综上所述,当x为或6或时,△PQR为等腰三角形.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,O为坐标原点,tan∠CAO﹣tan∠CBO=1.
(1)求证:n+4m=0;
(2)求m、n的值;
(3)当p>0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于一组数据的平均数、中位数、众数,下列说法中正确的是:
A. 平均数一定是这组数中的某个数 B. 众数一定是这组数中的某个数
C. 中位数一定是这组数中的某个数 D. 以上说法都不对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某自然保护区的面积为2150 000 000平方米,2150000000这个数用科学计数法表示为:
A. 2.15×108 B. 21.5×108 C. 2.15×109 D. 0.215×109
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中错误的有( )个
(1)等腰三角形的两个底角相等
(2)对角线相等且互相垂直的四边形是正方形
(3)对角线相等的四边形为矩形
(4)圆的切线垂直于半径
(5)平分弦的直径垂直于弦
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据下列条件可列出一元一次方程的是( )
A. a与1的和的3倍
B. 甲数的2倍与乙数的3倍的和
C. a与b的差的20%
D. 一个数的3倍是5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB,AD交于点A.C为直线AD上一点(不与点A,D重合).过点C在BC的右侧作射线CE⊥BC,过点D作直线DF∥AB,交CE于点G(G与D不重合).
(1)如图1,若点C在线段AD上,且∠BCA为钝角.
①按要求补全图形;②判断∠B与∠CGD的数量关系,并证明.
(2)若点C在线段DA的延长线上,请直接写出∠B与∠CGD的数量关系 ;
附加题(2分).
请你结合28题的题意提出一个新的拓展问题 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com