| A. | 1 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 2 |
分析 先作DE⊥AB于E,再根据tan∠DBA=$\frac{1}{5}$,求得BE=5AE,最后根据AB=AE+BE=AE+5AE=6$\sqrt{2}$,求得AE=$\sqrt{2}$,并在等腰直角三角形ADE中,由勾股定理求得AD即可.
解答
解:作DE⊥AB于E,
∵tan∠DBA=$\frac{1}{5}$=$\frac{DE}{BE}$,
∴BE=5DE,
∵△ABC为等腰直角三角形,
∴∠A=45°,
∴AE=DE,
∴BE=5AE,
又∵AC=6,
∴AB=6$\sqrt{2}$,
∴AE+BE=AE+5AE=6$\sqrt{2}$,
∴AE=$\sqrt{2}$,
∴在等腰直角三角形ADE中,由勾股定理得AD=2,
故选(D)
点评 本题主要考查了等腰直角三角形的性质以及直角三角形,解题的关键是作辅助线,构造直角三角形,运用三角函数的定义建立关系式进行求解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 8 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com