分析 (1)由正方形的性质得出AD∥BC,AB∥CD,∠DAE=∠ABF=90°,AD=AB,由平行线的性质得出∠DAG=∠1,∠AED=∠CDE,由HL证明Rt△ADE≌Rt△BAF,得出∠AED=∠1,即可得出∠DAG=∠AED=∠CDE=∠1;
(2)由平行线的性质即可得出∠DAG=∠1.
解答 解:如图所示:![]()
(1)∠DAG=∠AED=∠CDE=∠1;理由如下:
∵四边形ABCD是正方形,
∴AD∥BC,AB∥CD,∠DAE=∠ABF=90°,AD=AB,
∴∠DAG=∠1,∠AED=∠CDE,
在Rt△ADE和Rt△BAF中,$\left\{\begin{array}{l}{DE=AF}\\{AD=AB}\end{array}\right.$,
∴Rt△ADE≌Rt△BAF(HL),
∴∠AED=∠1,
∴∠DAG=∠AED=∠CDE=∠1;
(2)选择∠DAG=∠1;理由如下:
∵四边形ABCD是正方形,
∴AD∥BC,
∴∠DAG=∠1.
点评 本题考查了正方形的性质、平行线的性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等是解决问题的突破口.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{12}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{3π}{4}$ | B. | $\frac{5π}{2}$ | C. | 3π | D. | $\frac{9π}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com