精英家教网 > 初中数学 > 题目详情
4.如图,将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是(  )
A.65°B.75°C.85°D.不能确定

分析 根据平行线的性质及三角形内角定理解答.

解答 解:由三角板的性质可知∠EAD=45°,∠C=30°,∠BAC=∠ADE=90°.
∵AE∥BC,
∴∠EAC=∠C=30°,
∴∠DAF=∠EAD-∠EAC=45°-30°=15°.
∴∠AFD=180°-∠ADE-∠DAF=180°-90°-15°=75°.
故选:B.

点评 本题考查的是平行线的性质及三角形内角和定理,平行线的性质:两直线平行同位角相等,同旁内角互补.三角形内角和定理:三角形的内角和等于180°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.若一个三角形的三个顶点均在一个图形的不同的边上,则称此三角形为该图形的内接三角形.
(1)在图1中画出△ABC的一个内接直角三角形;
(2)如图2,已知△ABC中,∠BAC=60°,∠B=45°,AB=8,AD为BC边上的高,探究以D为一个顶点作△ABC的内接三角形,其周长是否存在最小值?若存在,请求出最小值;若不存在,请说明理由;
(3)如图3,△ABC为等腰直角三角形,∠C=90°,AC=6,试探究:△ABC的内接等腰直角三角形的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在△ABC中,AC=4cm,BC=10cm,BC边上的中线AD=3cm,求△ABD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,BE,CF分别是AC,AB边上的高,在BE上截取BD=AC,延长CF至G,使CG=AB,连接AD,AG,GD,试判断△AGD的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解下列方程:4x-3(19-x)=6x-7(9-x).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知一次函数y=2x-4.
(1)完成列表,并作出该函数的图象;
(2)设图象与x、y轴分别交于点A、B,求线段AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为每件360元,则每件服装获利60元.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.现定义一种新运算,对于任意有理数a、b、c、d满足$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,若对于含未知数x的式子满足$|\begin{array}{l}{3}&{3}\\{2x-1}&{2x+1}\end{array}|$=3,则未知数x=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在△ABC中,A(-2,3)、B(-3,1)、C(-1,2).
(1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1
(2)画出△ABC关于x轴对称的△A2B2C2
(3)将△ABC绕着原点O旋转180°,画出旋转后的△A3B3C3
(4)△A1B1C1与△A3B3C3关于点(2,0)成中心对称(填“轴对称”或“中心对称”).

查看答案和解析>>

同步练习册答案