【题目】已知关于x的方程x-mx+2m-1=0的两个实数根的平方和为7,那么m的值是
科目:初中数学 来源: 题型:
【题目】如图1,已知点A(﹣1,0),点B(0,﹣2),AD与y轴交于点E,且E为AD的中点,双曲线y=经过C,D两点且D(a,4)、C(2,b).
(1)求a、b、k的值;
(2)如图2,线段CD能通过旋转一定角度后点C、D的对应点C′、D′还能落在y=的图象上吗?如果能,写出你是如何旋转的,如果不能,请说明理由;
(3)如图3,点P在双曲线y=上,点Q在y轴上,若以A、B、P、Q为顶点的四边形为平行四边形,试求满足要求的所有点P、Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在下图中分别画出符合要求的图形,所画图形各顶点必须在方格纸的格点上.
(1)在图(a)中画一个等腰三角形,使它的底边长是4,且面积是16;
(2)在图(b)中画一个等腰直角三角形,使它的面积是10;
(3)在图(c)中画一个四边形,使它既是轴对称又是中心对称图形,且面积是29.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是 = =;
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
①求证:△ADB≌△AEC;
②请直接写出线段AD,BD,CD之间的等量关系式;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
①证明△CEF是等边三角形;
②若AE=5,CE=2,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,DE是⊙O的直径,AB是⊙O的弦,AB的中点C在直径DE上.已知AB=8cm,CD=2cm
(1)求⊙O的面积;
(2)连接AE,过圆心O向AE作垂线,垂足为F,求OF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCG(AB<BC)与矩形CDEF全等,点B,C,D在同一条直线上,∠APE的顶点P在线段BD上移动,使∠APE为直角的点P的个数是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.
(1)求∠EAD的余切值;
(2)求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,⊙A的半径为1,圆心A点的坐标为(2,1).直线OM是一次函数y=-x的图象.将直线OM沿x轴正方向平行移动.
(1)填空:直线OM与x轴所夹的锐角度数为 °;
(2)求出运动过程中⊙A与直线OM相切时的直线OM的函数关系式;(可直接用(1)中的结论)
(3)运动过程中,当⊙A与直线OM相交所得的弦对的圆心角为90°时,直线OM的函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com