精英家教网 > 初中数学 > 题目详情

在同一直角坐标系下,直线y=x+2与双曲线的交点的个数为【    】

  A.0个  B.1个  C.2个  D.不能确定


(1)∵反比例函数的图象在第四象限,∴,解得

(2)∵点A(2, 4)在函数图象上,

,解得

∴反比例函数解析式为

∵一次函数的图象过点A(2, 4)、B(6,),

,解得

∴一次函数的解析式是

【考点】反比例函数图象的性质,点的坐标与方程的关系,相似三角形的判定和性质,待定系数法,解二元一次方程组。


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,在矩形纸片ABCD中,AB=5CM,BC=10CM,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过点P作PF⊥AD,交BC于点F,将纸片折叠,使点P与点E重合,折痕与PF交于点Q,则PQ的长是(    ).

A. cm     B.3cm     C.2cm     D.cm

查看答案和解析>>

科目:初中数学 来源: 题型:


如果关于x的不等式组:,的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对[a,b]共有           个。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,Rt△OAB的边OA在x轴的正半轴上,OB在y轴的正半轴上,双曲线过AB的中点C,已知点A的坐标为(,0),点B的坐标为(0,1),则该双曲线的表达式为【    】

    A.         B.         C.        D.

查看答案和解析>>

科目:初中数学 来源: 题型:


B。

【考点】一次函数和反比例函数的性质,曲线上点的坐标与方程的关系,不等式的性质,排它法的应用。

【分析】∵,∴双曲线 的图象在一、三象限。故排除C。

            又∵函数

∴直线轴的交点在轴下方。故排除D。

又∵,即OB<OA。故排除A。

查看答案和解析>>

科目:初中数学 来源: 题型:


已知函数的图象如图所示,根据其中提供的信息,可求得使成立的的取值范围是(  )

A.                 B.    

C.                     D.

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为斜边的等腰直角三角形ABC的顶点C的坐标为         .

查看答案和解析>>

科目:初中数学 来源: 题型:


 某商家经销一种商品,用于装修门面已投资3000元。已知该商品每千克成本50元,在第一个月的试销时间内发现项,当销售单价为70元/ kg时,销售量为100 kg,销量w(kg)随销售单价x(元/ kg)的变化而变化,销售单价每提高5元/ kg,销售量减少10 kg。

     设该商品的月销售利润为y(元)(销售利润=单价×销售量-成本-投资)。

    (1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);

(2)求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?

(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700,那么第二个月时里应该确定销售单价为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,AB为⊙O的直径,弦CD与AB相交于E,DE=EC,过点B的切线与AD的延长线交于F,过E作EG⊥BC于G,延长GE交AD于H.

(1)求证:AH=HD;

(2)若AE:AD=,DF=9,求⊙O的半径。

查看答案和解析>>

同步练习册答案