精英家教网 > 初中数学 > 题目详情
4.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是50cm.

分析 根据垂径定理求得AD=30cm,然后根据勾股定理即可求得半径.

解答 解:如图,连接OA,
∵CD=10cm,AB=60cm,
∵CD⊥AB,
∴OC⊥AB,
∴AD=$\frac{1}{2}$AB=30cm,
∴设半径为r,则OD=r-10,
根据题意得:r2=(r-10)2+302
解得:r=50.
∴这个车轮的外圆半径长为50cm.
故答案为:50cm.

点评 本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.已知关于x的一元二次方程:x2-(m-3)x-m=0.
(1)试判断原方程根的情况;
(2)若抛物线y=x2-(m-3)x-m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.
(友情提示:AB=|x2-x1|)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.
理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;
(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;
(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=$\frac{12}{5}$,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是(  )
A.2B.2.8C.3D.3.3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,下列说法错误的是(  )
A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥c
C.若∠3=∠2,则b∥cD.若∠3+∠5=180°,则a∥c

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=$\sqrt{3}$:3.若新坡角外需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:$\sqrt{2}$≈1.414,$\sqrt{3}$≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列各式计算正确的是(  )
A.$\sqrt{\frac{-4}{-9}}$=$\frac{\sqrt{-4}}{\sqrt{-9}}$=$\frac{-2}{-3}$=$\frac{2}{3}$B.$\sqrt{4\frac{2}{9}}$=$\sqrt{\frac{38}{9}}$=2$\frac{1}{3}$$\sqrt{2}$
C.$\sqrt{\frac{3}{7}}$÷$\sqrt{3\frac{1}{2}}$=$\frac{\sqrt{6}}{7}$D.$\sqrt{\frac{8}{25}}$=5$\sqrt{8}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知PA与圆O相切于点A,直径BC⊥OP,线段OP与圆O交于点E,连接AB交PO于点D.
(1)求证:∠PAD=∠ACB;
(2)求证:AC•AP=AD•OC.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,△ABC中,∠ACB=90?,AB=10,tanA=$\frac{1}{2}$.点P是斜边AB上一个动点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案