8£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©µÄ¶Ô³ÆÖáΪֱÏßx=-1£¬ÇóÅ×ÎïÏß¾­¹ýA£¨1£¬0£©£¬C£¨0£¬3£©Á½µã£¬ÓëxÖá½»ÓÚA¡¢BÁ½µã£®
£¨1£©ÈôÖ±Ïßy=mx+n¾­¹ýB¡¢CÁ½µã£¬ÇóÖ±ÏßBCºÍÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÔÚ¸ÃÅ×ÎïÏߵĶԳÆÖáx=-1ÉÏÕÒÒ»µãM£¬Ê¹µãMµ½µãAµÄ¾àÀëÓëµ½µãCµÄ¾àÀëÖ®ºÍ×îС£¬Çó³öµãMµÄ×ø±ê£»
£¨3£©ÉèµãPΪ¸ÃÅ×ÎïÏߵĶԳÆÖáx=-1ÉϵÄÒ»¸ö¶¯µã£¬Çóʹ¡÷BPCΪֱ½ÇÈý½ÇÐεĵãPµÄ×ø±ê£®£¨Ìáʾ£ºÈôÆ½ÃæÖ±½Ç×ø±êϵÄÚÁ½µãP£¨x1£¬y1£©¡¢Q£¨x2£¬y2£©£¬ÔòÏß¶ÎPQµÄ³¤¶ÈPQ=$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨{y}_{1}-{y}_{2}£©^{2}}$£©£®

·ÖÎö £¨1£©¸ù¾ÝAºÍB¹ØÓÚx=-1¶Ô³Æ¼´¿ÉÇóµÃBµÄ×ø±ê£¬È»ºóÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇóµÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÇóµÃBCÓë¶Ô³ÆÖáµÄ½»µã¾ÍÊÇM£»
£¨3£©ÉèPµÄ×ø±êÊÇ£¨-1£¬p£©£¬ÀûÓÃÁ½µãÖ®¼äµÄ¾àÀ빫ʽ±íʾ³öBC¡¢BPºÍPCµÄ³¤£¬È»ºó·Ö³É¡÷BPCµÄÈý±ß·Ö±ðÊÇб±ßÈýÖÖÇé¿öÌÖÂÛ£¬ÀûÓù´¹É¶¨ÀíÁз½³ÌÇóµÃpµÄÖµ£¬µÃµ½PµÄ×ø±ê£®

½â´ð ½â£º£¨1£©A£¨1£¬0£©¹ØÓÚx=-1µÄ¶Ô³ÆµãÊÇ£¨-3£¬0£©£¬ÔòBµÄ×ø±êÊÇ£¨-3£¬0£©£®
¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{-3m+n=0}\\{n=3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{m=1}\\{n=3}\end{array}\right.$£¬
ÔòÅ×ÎïÏߵĽâÎöʽÊÇy=x+3£»
¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{9a-3b+c=0}\\{a+b+c=0}\\{c=3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{a=-1}\\{b=-2}\\{c=3}\end{array}\right.$£®
ÔòÅ×ÎïÏߵĽâÎöʽÊÇy=-x2-2x+3£»
£¨2£©ÔÚy=x+3ÖÐÁîx=-1£¬Ôòy=-1+3=2£¬
ÔòMµÄ×ø±êÊÇ£¨-1£¬2£©£»
£¨3£©ÉèPµÄ×ø±êÊÇ£¨-1£¬p£©£®
ÔòBP2=£¨-1+3£©2+p2=4+p2£®
PC=£¨0+1£©2+£¨3-p£©2=p2-6p+10£®
BC=32+32=18£®
µ±BCʱб±ßʱ£¬BP2+PC2=BC2£¬Ôò£¨4+p2£©+£¨p2-6p+10£©=18£¬
½âµÃ£ºp=-1»ò2£¬
ÔòPµÄ×ø±êÊÇ£¨-1£¬-1£©»ò£¨-1£¬2£©£»
µ±BPÊÇб±ßʱ£¬BP2=PC2+BC2£¬Ôò4+p2=£¨p2-6p+10£©+18£¬
½âµÃ£ºp=4£¬
ÔòPµÄ×ø±êÊÇ£¨-1£¬4£©£»
µ±PCÊÇб±ßʱ£¬PC2=BP2+BC2£¬Ôòp2-6p+10=4+p2+18£¬
½âµÃ£ºp=-2£¬
ÔòPµÄ×ø±êÊÇ£¨-1£¬-2£©£®
×ÜÖ®£¬PµÄ×ø±êÊÇ£¨-1£¬-1£©»ò£¨-1£¬2£©»ò£¨-1£¬4£©»ò£¨-1£¬-2£©£®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬ÒÔ¼°¶Ô³ÆµÄÐÔÖʺ͹´¹É¶¨Àí£¬ÕýÈ·ÀûÓÃp±íʾ³ö¡÷BPCµÄ±ßBPºÍPCµÄ³¤Êǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªa2+2a=1£¬Ôò3a2+6a-1=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®½â·½³Ì£º
£¨1£©$\frac{2}{x-1}$-$\frac{x+2}{x-1}$=1
£¨2£©$\frac{x}{{x}^{2}-9}$+$\frac{3}{x+3}$=$\frac{1}{x-3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®2015ÄêÄϾ©¹ú¼ÊÂíÀ­ËÉÓÚ11ÔÂ29ÈÕÉÏÎç8£º30ÔÚÄϾ©°ÂÌåÖÐÐÄÃùǹ¿ªÅÜ£¬Ô¼16000ÃûÖÐÍâÔ˶¯°®ºÃÕ߲μÓÁ˴˴λ£®16000ÓÿÆÑ§¼ÇÊý·¨¿É±íʾΪ1.6¡Á104£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¼ÆË㣺
£¨1£©$\sqrt{16}+£¨-12£©¡Á\root{3}{\frac{1}{8}}-\sqrt{£¨-1£©^{2}}$
£¨2£©$\frac{2+\sqrt{2}}{\sqrt{2}}+\sqrt{18}-4\sqrt{\frac{1}{2}}$
£¨3£©½â·½³Ì×飺$\left\{\begin{array}{l}{2x+y=4}\\{2y+1=5x}\end{array}\right.$
£¨4£©½â·½³Ì×飺$\left\{\begin{array}{l}{\frac{x}{2}-\frac{x-y}{3}=6}\\{x-3y=6}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Ò»Ôª¶þ´Î·½³Ìx2+$\sqrt{2}$x=0µÄ½âÊÇx1=0£¬x2=-$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®·Öʽ$\frac{x}{x+5}$ºÍ$\frac{x}{x-5}$µÄ×î¼ò¹«·ÖĸÊÇ£¨¡¡¡¡£©
A£®x+5B£®x-5C£®x2-25D£®·ÇÒÔÉÏ´ð°¸

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Ð¡ÍõÉÏÖÜÎåÂò½øÄ³Öֹɯ±1000¹É£¬Ã¿¹É28Ôª£ºÈç±íΪ±¾ÖÜÿÌìÊÕÅÌʱ¿Ì¹ÉƱµÄÕǵøÇé¿ö£º£¨µ¥Î»£ºÔª£©
 ÐÇÆÚ Ò» ¶þÈý  ËÄÎå 
 Ã¿¹ÉÕǵø+1+1.5-1.5-2.5+0.5
£¨1£©ÐÇÆÚÈýÊÕÅÌʱ£¬Ã¿¹ÉÊǶàÉÙÔª£¿
£¨2£©±¾ÖÜÄÚ×î¸ß¼ÛÊÇÿ¹É¶àÉÙÔª£¿×îµÍ¼ÛÊÇÿ¹É¶àÉÙÔª£¿
£¨3£©ÈôСÍõ°´±¾ÖÜÎåµÄÊÕÅ̼۽«¹ÉƱȫ²¿Âô³ö£¬ÄãÈÏΪËû»á»ñÀûÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èçͼ£¬ÎªÁ˹À¼Æ³ØÌÁ°¶±ßA£¬BÁ½µã¼äµÄ¾àÀ룬С«hͬѧÔÚ³ØÌÁÒ»²àѡȡһµãO£¬²âµÃOA=12Ã×£¬OB=7Ã×£¬ÔòA£¬B¼äµÄ¾àÀë²»¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®5Ã×B£®7Ã×C£®10Ã×D£®18Ã×

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸