【题目】如图,∠AOB=90°,且OA,OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A,B两点,则sin∠OAB的值是( )
A.B.C.D.
【答案】B
【解析】
根据反比例函数的几何意义,可求出△AOM,△BON的面积,由于∠AOB=90°,可证出△AOM∽△BON,由相似三角形的面积比等于相似比的平方,进而求出相似比,即直角三角形AOB两条直角边的比,可求出斜边,进而求sin∠OAB
过点A、B分别作AM⊥x轴,BN⊥x轴,垂足为M、N,
∵点A在反比例函数y=(x>0)的图象上,
∴S△AOM=×3=,
∵点B在反比例函数y=﹣(x<0)的图象上,
∴S△BON=×4=2,
∵∠AOB=90°
∴△BON∽△AOM,
∴()2==,
∴=,
在Rt△AOB中,设OB=2m,则OA=m,
∴AB==m,
∴sin∠OAB===,
故选:B.
科目:初中数学 来源: 题型:
【题目】如图是抛物线型拱桥,当拱顶离水面8m时,水面宽AB为12m.当水面上升6m时达到警戒水位,此时拱桥内的水面宽度是多少m?
下面给出了解决这个问题的两种方法,请补充完整:
方法一:如图1,以点A为原点,AB所在直线为x轴,建立平面直角坐标系xOy,
此时点B的坐标为( , ),抛物线的顶点坐标为( , ),
可求这条抛物线所表示的二次函数的解析式为 .
当y=6时,求出此时自变量x的取值,即可解决这个问题.
方法二:如图2,以抛物线顶点为原点,对称轴为y轴,建立平面直角坐标系xOy,
这时这条抛物线所表示的二次函数的解析式为 .
当y= 时,求出此时自变量x的取值为 ,即可解决这个问题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2;将△ABC绕点顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,求n的大小和图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.
(1)分别判断函数和是不是有界函数?若是有界函数,求其边界值;
(2)若函数的边界值是2,且这个函数的最大值也是2,求的取值范围;
(3)将函数的图象向下平移个单位,得到的函数的边界值是,当在什么范围时,满足?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2+2x﹣3.
(1)将二次函数y=x2+2x﹣3化成顶点式.
(2)求图象与x轴,y轴的交点坐标.
(3)在坐标系中利用描点法画出此抛物线.
(4)当x取何值时,y随x的增大而减小?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,P是边AD上的一点,连接BP,CP过点B作射线交线段CP的延长线于点E,交AD边于点M,且使∠ABE=∠CBP,AB=2,BC=5.
(1)证明:△ABM∽△APB;
(2)当AP=3时,求sin∠EBP的值;
(3)如果△EBC是以BC为底边的等腰三角形,求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边三角形ABC的边长为cm,在AC,BC边上各取一点E,F,使得AE=CF,连接AF,BE相交于点P.(1)则∠APB=______度;(2)当点E从点A运动到点C时,则动点P经过的路径长为________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD内接于⊙O,连接AC、BD,2∠BDC+∠ADB=180°.
(1)如图1,求证:AC=BC;
(2)如图2,E为⊙O上一点, =,F为AC上一点,DE与BF相交于点T,连接AT,若∠BFC=∠BDC+∠ABD,求证:AT平分∠DAB;
(3)在(2)的条件下,DT=TE,AD=8,BD=12,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,动点P从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动,运动时间为t(秒).
(1)直接写出点B和点C的坐标:B( , )、C( , );
(2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com