精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,BC=4,且AB=,连接对角线AC,点EAC中点,点F为线段AB上的动点,连接EF,作点C关于EF的对称点C',连接C'EC'F,若EFC'ACF的重叠部分(EFG)面积等于ACF,则BF=________

【答案】2-

【解析】

连接C′EC′A,作EMBCMENPC′N.只要证明四边形AFEC′是平行四边形即可解决问题.

解:连接C′EC′A,作EMCFMENFC′N

∵△EFC′与△ACF的重叠部分(△EFG)面积等于△ACF
EG=AG
∵∠EFC=EFC′EMBCMENFC′N
EM=EN
===2
FC=2FG
FC′=FC
FG=C′G,∵AG=GE
∴四边形AFEC′是平行四边形,
EC′=AF=EC=AC=×=
FB=2-

故答案为2-

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,点是第一象限角平分线上的两点,点的纵坐标为1,且,在轴上取一点,连接,使得四边形的周长最小,这个最小周长的值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下图为我市某校2015年参加各类比赛(包括围棋、书法、绘画、钢琴四个类别)的参赛人数统计图:

1)该校参加比赛的总人数是 人,并把条形统计图补充完整;

2)在扇形统计图中,该校参加围棋所对应的圆心角的度数是

3)从全市中小学参加比赛选手中随机抽取60人,其中有20人获奖.今年我市中小学参加比赛人数共有2400人,请你估算今年参加绘画比赛的人数以及参加比赛获奖的总人数约是多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据《汉书律历志》记载:“量者,龠(yuè)、合、升、斗、斛()也”斛是中国古代的一种量器,“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形的外接一个圆,此圆外是一个同心圆”,如图所示.

问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的周长为________尺.(结果用最简根式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段AB是直线y=x+1的一部分,其中点Ay轴上,点B横坐标为2,曲线BC是双曲线)的一部分,由点C开始不断重复“ABC”的过程,形成一组波浪线,点P(2019m)Q(2025n)均在该波浪线上,Gx轴上一动点,则PQG周长的最小值为(

A.16B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:

操作发现:

在等腰△ABC中,AB=AC,分别以ABAC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点FEG⊥AC于点GMBC的中点,连接MDME,则下列结论正确的是 (填序号即可)

①AF=AG=AB②MD=ME整个图形是轴对称图形;④∠DAB=∠DMB

数学思考:

在任意△ABC中,分别以ABAC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,MBC的中点,连接MDME,则MDME具有怎样的数量和位置关系?请给出证明过程;

类比探索:

在任意△ABC中,仍分别以ABAC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,MBC的中点,连接MDME,试判断△MED的形状.

答:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校准备购置一批教师办公桌椅,已知2A型桌椅和1B型桌椅共需2000元,1A型桌椅和3B型桌椅共需3000元.

1)求一套A型桌椅和一套B型桌椅的售价各是多少元;

2)学校准备购进这两种型号的办公桌椅200套,平均每套桌椅需要运费10元,并且A型桌椅的套数不多于B型桌椅的套数的3倍.请设计出最省钱的购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在中,,点的中点.

1)若点分别是的中点,则线段的数量关系是 ;线段的位置关系是

2)如图①,若点分别是上的点,且,上述结论是否依然成立,若成立,请证明;若不成立,请说明理由;

3)如图②,若点分别为延长线上的点,且,直接写出的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,在O中,弦ABCD相交于点F,∠BCD68°,∠CFA108°,求∠ADC的度数.

2)如图2,在正方形ABCD中,点ECD上一点(DECE),连接AE,并过点EAE的垂线交BC于点F,若AB9BF7,求DE长.

查看答案和解析>>

同步练习册答案