【题目】如图,在中,点、分别在、边上,与相交,如果,,平分,那么下列三角形中不与相似的是( )
A. △ABD B. △ACD C. △AGH D. △CDH
【答案】A
【解析】
由DA=DB,GB=GC,利用等边对等角得到两对角相等,再根据AD为角平分线,得到一对角相等,等量代换可得∠BAD=∠B=∠GCB=∠CAD,由∠CAD=∠B,加上一对公共角相等可得△ACD∽△BCA;由∠AHG为三角形ACH的外角,利用外角性质得到∠AHG=∠ACH+∠DAC,由∠ACD=∠ACH+∠GCB,可得出∠AHG=∠ACD,再由∠BAD=∠B,可得△AHG∽△ACB;由对顶角相等可得∠CHD=∠AHG,再由∠AHG=∠ACD等量代换可得∠CHD与∠ACD相等,再加上∠B=∠GCB,可得出△CDH∽△BAC;而三角形ABD与三角形ABC不满足相似的条件,进而确定出正确的选项.
∵DA=DB,GB=GC,
∴∠BAD=∠B,∠B=∠GCB,
又AD平分∠BAC,∴∠BAD=∠CAD,
∴∠BAD=∠B=∠GCB=∠CAD,
∴∠CAD=∠B,又∠ACD=∠CBA(公共角),
∴△ACD∽△BCA;
∵∠AHG为△DHC的外角,
∴∠AHG=∠ACH+∠DAC,
又∠ACD=∠ACH+∠GCB,且∠DAC=∠GCB,
∴∠AHG=∠ACD,又∠BAD=∠B,
∴△AHG∽△ACB;
∵∠CHD=∠AHG(对顶角相等),且∠AHG=∠ACD,
∴∠CHD=∠ACD,又∠B=∠GCB,
∴△CDH∽△BAC;
而∠B=∠B,∠BAD不等于∠ACB,则△ABD不相似△ABC,
则题中△ACD∽△BCA;△AHG∽△ACB;△CDH∽△BAC.
故选A.
科目:初中数学 来源: 题型:
【题目】尺规作图与说理(要求保留作图痕迹,不写作法.)如图,在Rt△ABC中,∠ACB=90°
(1)过点C作AB的垂线CD,交AB于点D;
(2)作∠ABC的平分线BE交AC于点E,交CD于点F;
(3)观察线段CE与CF有何数量关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,点O是边AC上一个动点,过点O作直线//BC,分别交,外角的平分线于点E、F.
(1)猜想与证明,试猜想线段OE与OF的数量关系,并说明理由.
(2)连接AE,AF,问:当点O在边AC上运动时到什么位置时,四边形AECF是矩形?并说明理由.
(3)若AC边上存在一点O,使四边形AECF是正方形,猜想的形状并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,BE⊥AC,垂足为E,AF平分∠BAC,交BE于F,点D在AC上,且AD=AB.
(1)求证:DF=BF;
(2)求证:∠ADF=∠C.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中,的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
以原点为对称中心,画出的中心对称图形.
以原点为位似中心,在原点的另一侧画出的位似三角形,与的位似比为;
的面积________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角中,,,是边上的一个动点,正方形是一个边长为的动正方形,其中点在上,,(与分居的两侧),正方形与的重叠的面积为.
当落在上时,求的值;
当不在上时,求与的关系式;
求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】结果如此巧合!
下面是小颖对一道题目的解答.
题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.
解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.
根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.
根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.
整理,得x2+7x=12.
所以S△ABC=ACBC
=(x+3)(x+4)
=(x2+7x+12)
=×(12+12)
=12.
小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?
请你帮她完成下面的探索.
已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.
可以一般化吗?
(1)若∠C=90°,求证:△ABC的面积等于mn.
倒过来思考呢?
(2)若ACBC=2mn,求证∠C=90°.
改变一下条件……
(3)若∠C=60°,用m、n表示△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com