精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,点分别在边上,相交,如果平分,那么下列三角形中不与相似的是( )

A. ABD B. ACD C. AGH D. CDH

【答案】A

【解析】

DA=DB,GB=GC,利用等边对等角得到两对角相等,再根据AD为角平分线,得到一对角相等,等量代换可得∠BAD=∠B=∠GCB=∠CAD,由∠CAD=∠B,加上一对公共角相等可得△ACD∽△BCA;由∠AHG为三角形ACH的外角,利用外角性质得到∠AHG=∠ACH+∠DAC,由∠ACD=∠ACH+∠GCB,可得出∠AHG=∠ACD,再由∠BAD=∠B,可得△AHG∽△ACB;由对顶角相等可得∠CHD=∠AHG,再由∠AHG=∠ACD等量代换可得∠CHD∠ACD相等,再加上∠B=∠GCB,可得出△CDH∽△BAC;而三角形ABD与三角形ABC不满足相似的条件,进而确定出正确的选项.

∵DA=DB,GB=GC,

∴∠BAD=∠B,∠B=∠GCB,

AD平分∠BAC,∴∠BAD=∠CAD,

∴∠BAD=∠B=∠GCB=∠CAD,

∴∠CAD=∠B,又∠ACD=∠CBA(公共角),

∴△ACD∽△BCA;

∵∠AHG为△DHC的外角,

∴∠AHG=∠ACH+∠DAC,

又∠ACD=∠ACH+∠GCB,且∠DAC=∠GCB,

∴∠AHG=∠ACD,又∠BAD=∠B,

∴△AHG∽△ACB;

∵∠CHD=∠AHG(对顶角相等),且∠AHG=∠ACD,

∴∠CHD=∠ACD,又∠B=∠GCB,

∴△CDH∽△BAC;

而∠B=∠B,∠BAD不等于∠ACB,则△ABD不相似△ABC,

则题中△ACD∽△BCA;△AHG∽△ACB;△CDH∽△BAC.

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】尺规作图与说理(要求保留作图痕迹,不写作法.)如图,在RtABC中,∠ACB90°

1)过点CAB的垂线CD,交AB于点D

2)作∠ABC的平分线BEAC于点E,交CD于点F

3)观察线段CECF有何数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,点O是边AC上一个动点,过点O作直线//BC,分别交,外角的平分线于点EF.

1)猜想与证明,试猜想线段OEOF的数量关系,并说明理由.

2)连接AEAF,问:当点O在边AC上运动时到什么位置时,四边形AECF是矩形?并说明理由.

3)若AC边上存在一点O,使四边形AECF是正方形,猜想的形状并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在等边ABC中,点D.E分别在边BCAB上,且BD=AEADCE交于点F

1)求证:AD=CE

2)求∠DFC的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ABC90°BEAC,垂足为EAF平分∠BAC,交BEF,点DAC上,且ADAB

1)求证:DFBF

2)求证:∠ADF=∠C

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中,的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:

以原点为对称中心,画出的中心对称图形

以原点为位似中心,在原点的另一侧画出的位似三角形的位似比为

的面积________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,沿AE折叠矩形,点D恰好落在BC边上的点F处,已知AB=8cmBC=10cm,求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在锐角中,边上的一个动点,正方形是一个边长为的动正方形,其中点在上,,(分居的两侧),正方形的重叠的面积为

落在上时,求的值;

不在上时,求的关系式;

的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】结果如此巧合!

下面是小颖对一道题目的解答.

题目:如图,RtABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.

解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.

根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.

根据勾股定理,得(x+3)2+(x+4)2=(3+4)2

整理,得x2+7x=12.

所以SABC=ACBC

=(x+3)(x+4)

=(x2+7x+12)

=×(12+12)

=12.

小颖发现12恰好就是3×4,即△ABC的面积等于ADBD的积.这仅仅是巧合吗?

请你帮她完成下面的探索.

已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.

可以一般化吗?

(1)若∠C=90°,求证:△ABC的面积等于mn.

倒过来思考呢?

(2)若ACBC=2mn,求证∠C=90°.

改变一下条件……

(3)若∠C=60°,用m、n表示△ABC的面积.

查看答案和解析>>

同步练习册答案