【题目】如图,在平面直角坐标系xOy中,函数y=(x<0)的图象经过点A(﹣1,6).
(1)求k的值;
(2)已知点P(a,﹣2a)(a<0),过点P作平行于x轴的直线,交直线y=﹣2x﹣2于点M,交函数y=(x<0)的图象于点N.
①当a=﹣1时,求线段PM和PN的长;
②若PN≥2PM,结合函数的图象,直接写出a的取值范围.
【答案】(1)k=-6;(2)①PM=1,PN=2;②a≤﹣3或﹣1≤a<0.
【解析】
(1)把点A(﹣1,6)代入解析式即可求解;
(2)①当a=﹣1时,点P的坐标为(﹣1,2),把y=2分别代入y=﹣2x﹣2与y=﹣即可求得M、N的坐标,进一步即可求得PM、PN;
②先求出PN=2PM时a的值,再根据函数的图象即可求解.
(1)∵函数y=(x<0)的图象经过点A(﹣1,6).
∴k=﹣1×6=﹣6.
(2)①当a=﹣1时,点P的坐标为(﹣1,2).
∵直线y=﹣2x﹣2,反比例函数的解析式为y=﹣,PN∥x轴,
∴把y=2代入y=﹣2x﹣2,求得x=﹣2,代入y=﹣求得x=﹣3,
∴M(﹣2,2),N(﹣3,2),
∴PM=1,PN=2.
②把y=-2a代入y=﹣2x﹣2,求得x=a-1;代入y=﹣求得x=,
∴M点的坐标为(a-1,-2a),N点的坐标为(,-2a)
当PN=2PM时, ,解得:a=±1或±3(负值舍去)
∴当a=﹣1或a=﹣3时,PN=2PM,
∴根据图象PN≥2PM,a的取值范围为a≤﹣3或﹣1≤a<0.
科目:初中数学 来源: 题型:
【题目】将如图所示的牌面数字分别是1,2,3,4 的四张扑克牌背面朝上,洗匀后放在桌面上.
(1)从中随机抽出一张牌,牌面数字是偶数的概率是_____;
(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是 4 的倍数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得点P在射线BC上,且∠APB=∠ACB(0°<∠ACB<180°),则称P为⊙C的依附点.
(1)当⊙O的半径为1时
①已知点D(﹣1,0),E(0,﹣2),F(2.5,0),在点D,E,F中,⊙O的依附点是 ;
②点T在直线y=﹣x上,若T为⊙O的依附点,求点T的横坐标t的取值范围;
(2)⊙C的圆心在x轴上,半径为1,直线y=﹣2x+2与x轴、y轴分别交于点M、N,若线段MN上的所有点都是⊙C的依附点,请求出圆心C的横坐标n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是( )
①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解早高峰期间A,B两邻近地铁站乘客的乘车等待时间(指乘客从进站到乘上车的时间),某部门在同一上班高峰时段对A、B两地铁站各随机抽取了500名乘客,收集了其乘车等待时间(单位:分钟)的数据,统计如表:
等待时的频数间 乘车等待时间 地铁站 | 5≤t≤10 | 10<t≤15 | 15<t≤20 | 20<t≤25 | 25<t≤30 | 合计 |
A | 50 | 50 | 152 | 148 | 100 | 500 |
B | 45 | 215 | 167 | 43 | 30 | 500 |
据此估计,早高峰期间,在A地铁站“乘车等待时间不超过15分钟”的概率为_____;夏老师家正好位于A,B两地铁站之间,她希望每天上班的乘车等待时间不超过20分钟,则她应尽量选择从_____地铁站上车.(填“A”或“B”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系xOy中的点P和图形G,给出如下定义:将点P沿向右或向上的方向平移一次,平移距离为d(d>0)个长度单位,平移后的点记为P′,若点P′在图形G上,则称点P为图形G的“达成点”.特别地,当点P在图形G上时,点P是图形G的“达成点”.例如,点P(﹣1,0)是直线y=x的“达成点”.
已知⊙O的半径为1,直线l:y=﹣x+b.
(1)当b=﹣3时,
①在O(0,0),A(﹣4,1),B(﹣4,﹣1)三点中,是直线l的“达成点”的是:_____;
②若直线l上的点M(m,n)是⊙O的“达成点”,求m的取值范围;
(2)点P在直线l上,且点P是⊙O的“达成点”.若所有满足条件的点P构成一条长度不为0的线段,请直接写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为( )
A. (﹣) B. (﹣) C. (﹣) D. (﹣)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB的长为1,线段AB上取点P1满足关系式AP12=BP1AB,则线段AP1的长度为_____;线段AP1上取点P2满足关系式AP22=P1P2AP1,线段AP2上的点P3满足关系式AP32=P2P3AP2,依次以此类推,APn的长度为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种商品的标价为元/件,经过两次降价后的价格为元/件,并且两次降价的百分率相同.
(1)求该种商品每次降价的百分率;
(2)若该种商品进价为元/件,两次降价共售出此种商品件,为使两次降价销售的总利润不少于元,则第一次降价后至少要售出该种商品多少件?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com