分析 根据翻转变换的性质、正方形的性质进行计算,判断即可.
解答 解:∵四边形ABCD是正方形,
∴∠ADB=45°,
由折叠的性质可知,∠ADE=∠BDE=22.5°,
∴∠AGD=180°-90°-22.5°=112.5°,①正确;
设AE=x,
∵△BEF是等腰直角三角形,
∴BE=$\sqrt{2}$EF=$\sqrt{2}$AE=$\sqrt{2}$x,
∴x+$\sqrt{2}$x=1,
解得,x=$\sqrt{2}$-1,
∴tan∠AED=$\frac{AD}{AE}$=$\sqrt{2}$+1,②正确;
由同位角相等可知,GF∥AB,EF∥AC,
∴四边形AEFG是平行四边形,
由折叠的性质可知,EA=EF,
∴四边形AEFG是菱形,③正确;
由正方形的性质可知,S△ACD=2S△OCD,④错误,
故答案为:①②③.
点评 本题考查的是翻转变换的性质、菱形的性质、解直角三角形的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 图象经过点(1,-3) | |
B. | 图象分布在第二、四象限 | |
C. | 当x>0时,y随x的增大而增大 | |
D. | 点A(x1,y1)、B(x2、y2)都在反比例函数y=-$\frac{3}{x}$的图象上,若x1<x2,则y1<y2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com