精英家教网 > 初中数学 > 题目详情
11.如图,已知正方形ABCD的边长为4,点E、F分别在边AB、ABC上,且AE=BF=1,CE、DF相交于点O,下列结论:
①∠DOC=90°,②OC=OE,③tan∠OCD=$\frac{4}{3}$,④△COD的面积等于四边形BEOF的面积,正确的有 (  )
A.1个B.2个C.3个D.4个

分析 ①正确.由△EBC≌△FCD(SAS),推出∠CFD=∠BEC,推出∠BCE+∠BEC=∠BCE+∠CFD=90°,推出∠DOC=90°.
②错误.用反证法证明.
③正确.易证得∠OCD=∠DFC,由此tan∠OCD=tan∠DFC=$\frac{DC}{FC}$=$\frac{4}{3}$.
④正确.由△EBC≌△FCD,推出S△EBC=S△FCD,推出S△EBC-S△FOC=S△FCD-S△FOC,即S△ODC=S四边形BEOF

解答 解:∵正方形ABCD的边长为4,
∴BC=CD=4,∠B=∠DCF=90°,
∵AE=BF=1,
∴BE=CF=4-1=3,
在△EBC和△FCD中,
$\left\{\begin{array}{l}{BC=CD}\\{∠B=∠DCF}\\{BE=CF}\end{array}\right.$,
∴△EBC≌△FCD(SAS),
∴∠CFD=∠BEC,
∴∠BCE+∠BEC=∠BCE+∠CFD=90°,
∴∠DOC=90°,故①正确;
连接DE,如图所示:
若OC=OE,
∵DF⊥EC,
∴CD=DE,
∵CD=AD<DE(矛盾),故②错误;
∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,
∴∠OCD=∠DFC,
∴tan∠OCD=tan∠DFC=$\frac{DC}{FC}$=$\frac{4}{3}$,故③正确;
∵△EBC≌△FCD,
∴S△EBC=S△FCD
∴S△EBC-S△FOC=S△FCD-S△FOC
即S△ODC=S四边形BEOF,故④正确;
故选C.

点评 此题考查了正方形的性质、全等三角形的判定与性质、直角三角形的性质以及三角函数等知识,解题的关键是正确寻找全等三角形解决问题,学会用反证法的方法证明②错误,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,三个相同的三角尺拼接成一个图形,请找出图中的所有平行线,并写出完整推理说明平行的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列计算或说法中,错误的有(  )个
①(-x23=-x5;②(-3)0+(-$\frac{1}{2}$)-2-6=-1;③-3a-2=-$\frac{1}{9{a}^{2}}$;④(a-1)2=a2-1.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:
①∠AGD=112.5°;②tan∠AED=$\sqrt{2}$+1;③四边形AEFG是菱形;④S△ACD=$\sqrt{3}$S△OCD
其中正确结论的序号是①②③.(把所有正确结论的序号都填在横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.将y=x2向上平移2个单位后所得到的抛物线的解析式为(  )
A.y=x2-2B.y=x2+2C.y=(x-2)2D.y=(x+2)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,直线AB、CD相交于点O,OM⊥AB于点O,若∠MOD=43°,则∠COB=133度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.小明家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小明按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.
(1)若小明任意按下一个开关,则下列说法正确的是(D )
A.小明打开的一定是楼梯灯;
B.小明打开的可能是卧室灯;
C.小明打开的不可能是客厅灯;
D.小明打开走廊灯的概率是$\frac{1}{3}$
(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.不等式2x-6≥0的解集是x≥3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.对于下列结论:
①二次函数y=6x2,当x>0时,y随x的增大而增大.
②关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1(a、m、b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是x1=-4,x2=-1.
③设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是c≥3.
其中,正确结论的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案