【题目】为了节省材料,某水产养殖户利用水库的一角∠MON(∠MON=135°)的两边为边,用总长为120m的围网在水库中围成了如图所示的①②③三块区域,其中区域①为直角三角形,区域②③为矩形,而且四边形OBDG为直角梯形.
(1)若①②③这块区域的面积相等,则OB的长为 m;
(2)设OB=xm,四边形OBDG的面积为ym2,
①求y与x之的函数关系式,并注明自变量x的取值范围;②x为何值时,y有最大值?最大值是多少?
【答案】(1)24;(2)①,(0﹤x﹤60);②当x=15时,y有最大值,最大值为900.
【解析】
(1)首先证明EG=EO=DB,DE=FC=OB,设OB=CF=DE=x,则,由①②③这块区域的面积相等,得到,解方程即可;
(2)①根据直角梯形的面积公式计算即可;②利用二次函数的性质求出y的最大值,以及此时x的值即可.
解:(1)解:(1)由题意可知,∠MON=135°,∠EOB=∠D=∠DBO=90°,
∴∠EGO=∠EOG=45°,
∴EG=EO=DB,DE=FC=OB,设OB=CF=DE=x,则,
∵①②③这块区域的面积相等,
,
∴x=24或60(舍弃),
∴BC=24m.
故答案为24.
(2)由题意可知,∠MON=135°,∠EOB=∠D=∠DBO=90°,
∴∠EGO=∠EOG=45°,
∴CF=DE=OB=x,则GE=OE=BD=(120-2x)=40-x
①y=
= (0﹤x﹤60)
②
=
∴当x=15时,y有最大值,最大值为900.
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,说明理由;
(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化.若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段PB的长为何值时,△PQR与△BOC相似.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB,AC均为⊙O的切线,切点分别为B,C,点D是优弧BC上一点,则下列关系式中,一定成立的是( )
A. ∠A+∠D=180°B. ∠A+2∠D=180°
C. ∠B+∠C=270°D. ∠B+2∠C=270°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.
(1)求抛物线及直线AC的函数关系式;
(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;
(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠A=∠ABC=90°,AD=2,BC=6,点E是边CD的中点,连接BE并延长交AD的延长线于点F,连接CF.若△BCD是等腰三角形,则四边形BDFC的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.
(1)求证:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE-ED-DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(),已知y与t之间的函数图象如图2所示.
给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②=48;③当14<t<22时,y=110-5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.
其中正确结论的序号是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
品名 | 猕猴桃 | 芒果 |
批发价元千克 | 20 | 40 |
零售价元千克 | 26 | 50 |
他购进的猕猴桃和芒果各多少千克?
如果猕猴桃和芒果全部卖完,他能赚多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”
译文:“今有只雀、只燕,分别聚焦而且用衡器称之,聚在一起的雀重,燕轻.经一只雀、一只燕交换位置而放,重量相等.只雀、只燕重量为斤.问雀、燕每只各重多少斤?”
请列方程组解答上面的问题.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com