精英家教网 > 初中数学 > 题目详情
1.先化简,再求值:$\frac{x-1}{x-2}$÷$\frac{{x}^{2}-2x+1}{{x}^{2}-4}$,其中x=3.

分析 首先把除法转化为乘法,分子和分母分解因式,计算乘法即可化简,然后化简x的值,代入求解即可.

解答 解:原式=$\frac{x-1}{x-2}$•$\frac{(x+2)(x-2)}{(x-1)^{2}}$
=$\frac{x+2}{x-1}$.
当x=3时,原式=$\frac{5}{2}$.

点评 本题考查了分式的化简求值,正确对所求的分式进行通分、约分是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,已知平面坐标系中,A(-1,5),B(2,0),C(-3,-1).
(1)画出△ABC关于y轴对称的图形△A1B1C1
(2)写出A1、B1、C1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若两个相似三角形的相似比是2:3,则它们的对应高线的比是2:3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:$\sqrt{8}$-|-3$\sqrt{2}$|-($\frac{1}{2}$)-1+2cos45°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,?ABCD中,AE=EF=FB,CE交DF,DB于M,N,则EM:MN:NC=(  )
A.5:4:12B.5:3:12C.4:3:5D.2:1:4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如果|3x+2y+5|+(2x-7y-15)2=0,则x-y的值是$\left\{\begin{array}{l}{x=-\frac{1}{5}}\\{y=-\frac{11}{5}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图(1),已知抛物线y=ax2+bx+5与x轴交于A、B(点A在点B的左侧)两点,与y轴交于点C,已知点A的横坐标为-5,且点D(-2,-3)在此抛物线的对称轴上.
(1)求a、b的值;
(2)若在直线AC上方的抛物线上有一点M,当点M到x轴的距离与M到直线AC的距离之比为$\frac{{4\sqrt{2}}}{3}$时,在y轴上找一点P,使得|PD-PM|值最大,时求此时点P的坐标及|PD-PM|的最大值;
(3)如图(2),过点B作BK⊥x轴交直线AC于点K,连接DK、AD,点H是DK的中点,点G是线段AK上任意一点,将△DGH沿边GH翻折得△D'GH,当KG为何值时,△D'GH与△KGH重叠部分的面积是△DGK面积的$\frac{1}{4}$?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解方程组:$\left\{\begin{array}{l}{x+y+z=6}\\{3x-y+2z=12}\\{x-y-3z=-4}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,对△ABC纸片进行如下操作:
第1次操作:将△ABC沿着过AB中点D1的直线折叠,使点A落在BC边上的A1处,折痕D1E1到BC的距离记作h1,然后还原纸片;
第2次操作:将△AD1E1沿着过AD1中点D2的直线折叠,使点A落在D1E1边上的A1处,折痕D1E1到BC的距离记作h2,然后还原纸片;

按上述方法不断操作下去…,经过第n次操作后得到的折痕DnEn到BC的距离记作hn,若h=1,则hn的值不可能是(  )
A.$\frac{3}{2}$B.$\frac{7}{4}$C.$\frac{13}{8}$D.$\frac{31}{16}$

查看答案和解析>>

同步练习册答案