精英家教网 > 初中数学 > 题目详情

【题目】阅读与理解:

如图,一只甲虫在5×5的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右)爬行记为“+”,向下(或向左)爬行记为,并且第一个数表示左右方向,第二个数表示上下方向.

例如:从AB记为:AB+1+4),从DC记为:DC(﹣1+2).

思考与应用:

1)图中BC  CD    

2)若甲虫从AP的行走路线依次为:(+3+2+1+3+1,﹣2),请在图中标出P的位置.

3)若甲虫的行走路线为A+1+4+20+1,﹣2(﹣4,﹣2),请计算该甲虫走过的总路程S

【答案】1+20+1,﹣2;(2)若甲虫从AP的行走路线依次为:AEFP,图中P的即为所求.见解析;(3)甲虫走过的总路程为16

【解析】

1BC只向右走3格;CD先向右走1格,再向下走2格,由此写出即可.

2)由(+3+2+1+3+1,﹣2)可知从A处右移3格,上移2格,再右移1格,上移3格,右移1格,下移2格即是甲虫P处的位置;

3)由A+1+4+20+1,﹣2(﹣4,﹣2)知:先向右移动1格,向上移动4格,向右移动2格,再向右移动1格,向下移动2格,最后向左移动4格,向下移动2格,把移动的距离相加即可.

1)图中BC+2.0),CD+1,﹣2).

故答案为:+20+1,﹣2

2)若甲虫从AP的行走路线依次为:AEFP,图中P的即为所求.

3)若甲虫的行走路线为A→(+1+4)→(+20)→(+1,﹣2)→(﹣4,﹣2),

甲虫走过的总路程S1+4+2+1+2+4+216

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,四边形ABCD是正方形,GCD边上的一个动点(点GC、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.

(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;

②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.

(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.

(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离(米)与甲出发的时间(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙用16分钟追上甲;③乙走完全程用了30分钟;④乙到达终点时甲离终点还有360米.其中正确的结论有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如表是一个4×4(44列共16组成)的奇妙方阵,从这个方阵中选四个,而且这四个中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个相加,其和是定值,则方阵中第三行三列的是(  )

30

2sin60°

22

﹣3

﹣2

sin45°

0

|﹣5|

6

23

1

4

1

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级两个班各选派10名学生参加垃圾分类知识竞赛,各参赛选手的成绩如下:

八(1)班:889192939393949898100

八(2)班:89939393959696989899

通过整理,得到数据分析表如下

班级

最高分

平均分

中位数

众数

方差

八(1)班

100

93

93

12

八(2)班

99

95

8.4

1)求表中的值;

2)依据数据分析表,有同学认为最高分在(1)班,(1)班的成绩比(2)班好.但也有同学认为(2)班的成绩更好.请你写出两条支持八(2)班成绩更好的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:我们把三角形被一边中线分成的两个三角形叫做友好三角形”.

性质:如果两个三角形是友好三角形,那么这两个三角形的面积相等.

理解:如图①,在△ABC中,CDAB边上的中线,那么△ACD和△BCD友好三角形,并且SACD=SBCD

应用:如图②,在矩形ABCD中,AB=4,BC=6,点EAD上,点FBC上,AE=BF,AFBE交于点O.

(1)求证:△AOB和△AOE友好三角形”;

(2)连接OD,若△AOE和△DOE友好三角形,求四边形CDOF的面积.

探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,ACD和△BCD友好三角形,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABC分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在(

AAB中点 B.BC中点 C AC中点 DC的平分线与AB的交点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的方程2x﹣3﹣m=2的解和方程3x﹣7=2x的解相同.

1)求m的值;

2)已知线段AB=m,在直线AB上取一点P,恰好使AP=2PB,点QPB的中点,求线段AQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读材料:如图(1),在数轴上示的数为点表示的数为,则点到点的距离记为.线段的长可以用右边的数减去左边的数表示,即.

解决问题:如图(2),数轴上点表示的数是-4,点表示的数是2,点表示的数是6.

1)若数轴上有一点,且,则点表示的数为

2)点开始在数轴上运动,若点以每秒1个单位长度的速度向左运动,同时,若点和点分别以每秒2个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为,点与点之间的距离表示为.则点表示的数是 (用含的代数式表示), (用含的代数式表示).

3)请问:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.

查看答案和解析>>

同步练习册答案