精英家教网 > 初中数学 > 题目详情
11.已知平面直角坐标中的两点A(a,-3)、B(1,2a+b)关于原点对称,则a=1,b=-5.

分析 根据关于原点对称的点的坐标横坐标互为相反数,纵坐标互为相反数,可得答案.

解答 解:平面直角坐标中的两点A(a,-3)、B(1,2a+b)关于原点对称,得
a=1,2a+b=-3,
解得a=1,b=-5.
故答案为:1,-5.

点评 本题考查了关于原点对称的点的坐标,关于原点对称的点的坐标横坐标互为相反数,纵坐标互为相反数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数y=$\frac{1}{x}$(x>0)的图象上,则点B的坐标为(1,1),点E的坐标为($\frac{1+\sqrt{5}}{2}$,$\frac{-1+\sqrt{5}}{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.正方形ABCD的边长为2,点E、F分别是对角线BD上的两点,过点E、F分别作AD、AB的平行线,如图所示,则图中阴影部分的面积之和等于2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于 D,DF⊥AC交AC的延长线于F,连接CD,给出三个结论:
①AE=2BD;②AB-AC=CE;③CE=2FC;
其中正确的结论有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.已知-1是关于x的一元二次方程x2+x-a=0的一个根,则a的值是(  )
A.3B.2C.-1D.0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知二次函数y=-x2+ax-4的图象的最高点在x轴上,则该点的坐标是(2,0)或(-2,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知正多边形内接于圆O,P为相邻两个顶点所夹的劣弧上一点.
(1)如果这是一个正三角形,P为相邻两个顶点A,C所夹的劣弧上一点,观察并度量可知$\frac{PA+PC}{PB}$的值为1;
(2)如果这是一个正方形ABCD,P为相邻两个顶点A,D所夹的劣弧上一点,求$\frac{PA+PC}{PB}$的值,写出推理过程;
(3)根据以上步骤,猜想规律,直接写出以下问题的结果.
①如果这是一个正五边形ABCDE,P为相邻两个顶点A,E所夹的劣弧上一点,则$\frac{PA+PC}{PB}$的值为2cos36°;
②如图这是一个正六边形ABCDEF,P为相邻两个顶点A、F所夹的劣弧上一点,则$\frac{PA+PC}{PB}$的值为$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,点A(0,1)、B(2,0),点P从(4,0)出发,以每秒2个单位长度沿x轴向坐标原点O匀速运动,同时,点Q从点B出发,以每秒1个单位长度沿x轴向坐标原点O匀速运动,过点P作x轴的垂线l,过点Q作AB的垂线l2,它们的交点为M.设运动的时间为t(0<t<2)秒
(1)写出点M的坐标(用含t的代数式表示);
(2)设△MPQ与△OAB重叠部分的面积为S,试求S关于t的函数关系式及t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.单项式-3amb2与bna2是同类项,则m=2,n=2.

查看答案和解析>>

同步练习册答案