精英家教网 > 初中数学 > 题目详情

【题目】根据《国家学生体质健康标准》规定:九年级男生坐位体前屈达到17.8厘米及以上为优秀;达到13.8厘米至17.7厘米为良好;达到厘米至13.7厘米为及格;达到厘米及以下为不及格.某校为了了解九年级男生的身体柔韧性情况,从该校九年级男生中随机抽取了20%的学生进行坐位体前屈测试,并把测试结果绘制成如图所示的统计表和扇形统计图(部分信息不完整),请根据所给信息解答下列问题.

1)求参加本次坐位体前屈测试人数;

2)求abc的值;

3)试估计该年级男生中坐位体前屈成绩不低于13.8厘米的人数.

【答案】1)参加本次坐位体前屈测试人数为60人;(2a=12b=27c=6;(3)该年级男生中坐位体前屈成绩不低于13.8厘米的人数有195人.

【解析】

1)利用及格的人数除以其所占的百分比即可得出答案;

2)先求出优秀的人所占的百分比,然后用总数乘以这个百分比即可得到a的值,用总数乘以45%即可得到b的值,用总数乘以10%即可得到c的值;

3)先求出九年级男生的总人数,然后用总人数乘以样本中不低于13.8厘米的人数所占的百分比即可得出答案.

115÷25%=60(人)

故参加本次坐位体前屈测试人数为60人.

2

3)总人数:60÷20%=300(人),

(人),

该年级男生中坐位体前屈成绩不低于13.8厘米的人数有195人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线的对称轴是直线,与x轴相交于AB两点(点B在点A右侧),与y轴交于点C

1)求抛物线的解析式和AB两点的坐标;

2)如图1,若点P是抛物线上BC两点之间的一个动点(不与BC重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由;

3)如图2,若点M是抛物线上任意一点,过点My轴的平行线,交直线BC于点N,当MN=3时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线,与x轴交于A、B两点(A在点B的左侧).

(1)求点A和点B的坐标;

(2)若点Pmn)是抛物线上的一点,过点Px轴的垂线,垂足为点D

①在的条件下,当时,n的取值范围是,求抛物线的表达式;

②若D点坐标(4,0),当时,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本价为50/千克,规定每千克售价不低于成本价,且不高于85元.经过市场调查,该商品每天的销售量(千克)与售价(元/千克)满足一次函数关系,部分数据如下表:

售价(元/千克)

50

60

70

销售量(千克)

120

100

80

1)求之间的函数表达式.

2)设该商品每天的总利润为(元),则当售价定为多少元/千克时,超市每天能获得最大利润?最大利润是多少元?

3)如果超市要获得每天不低于1600元的利润,且符合超市自己的规定,那么该商品的售价的取值范围是多少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,点边上的中点,点边上的一个动点,延长,使,作,其中点在上.

1)如图①,若,则_______

2)如图②,若,求的值;

3)如图③,若,延长到点,使得,连接,在点运动的过程中,探究:当的值为多少时,线段的长度和取得最小值?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB//CD,点E是直线AB上的点,过点E的直线l交直线CD于点FEG平分∠BEFCD于点G.在直线l绕点E旋转的过程中,图中∠1,∠2的度数可以分别是(

A.30°,110°B.56°70°C.70°,40°D.100°40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,折叠矩形纸片ABCD,具体操作:①点EAD边上一点(不与点AD重合),把ABE沿BE所在的直线折叠,A点的对称点为F点;②过点E对折∠DEF,折痕EG所在的直线交DC于点GD点的对称点为H点.

1)求证:ABEDEG

2)若AB=3BC=5

①点E在移动的过程中,求DG的最大值

②如图2,若点C恰在直线EF上,连接DH,求线段DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则yx的函数关系式是(

A.y=﹣(x602+1825B.y=﹣2x602+1850

C.y=﹣(x652+1900D.y=﹣2x652+2000

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k0)的图象交于A(﹣1,a),B两点,与x轴交于点C.

(1)求此反比例函数的表达式;

(2)若点P在x轴上,且SACP=SBOC,求点P的坐标.

查看答案和解析>>

同步练习册答案