【题目】下面是小元设计的“过直线外一点作已知直线的平行线”的尺规作图过程.
已知:如图,直线l和直线外一点P.
求作:过点P作直线l的平行线.
作法:如图,
①在直线l上任取点O;
②作直线;
③以点O为圆心长为半径画圆,交直线于点A,交直线l于点B;
④连接,以点B为圆心,长为半径画弧,交于点C(点A与C不重合);
⑤作直线.
则直线即为所求.
根据小元设计的尺规作图过程,完成以下任务.
(1)补全图形;
(2)完成下面的证明:
证明:连接
∵
∴
∴________________,
又∵,
∴________________,
∴,
∴(___________________________)(填推理的依据).
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知菱形ABCD和菱形DEFG有公共的顶点D,C点在DE上,且∠ADC=∠EDG,连接AE,CG,如图1.
(1)试猜想AE与CG有怎样的数量关系(直接写出关系,不用证明);
(2)将菱形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,请给出证明;若不成立,请说明理由;
(3)在(2)的条件下,如果∠ADC=∠EDG=90°,如图3,你认为AE和CG是否垂直?若垂直,请给出证明;若不垂直,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,隧道的截面由抛物线和长方形构成.长方形的长为16m,宽为6m,抛物线的最高点C离路面AA1的距离为8m.
(1)建立适当的坐标系,求出表示抛物线的函数表达式;
(2)一大型货车装载设备后高为7m,宽为4m.如果隧道内设双向行驶车道,那么这辆货车能否安全通过?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司经过市场调查,发现某种运动服的销量与售价是一次函数关系,具体信息如下表:
售价(元/件) | 200 | 210 | 220 | 230 | … |
月销量(件) | 200 | 180 | 160 | 140 | … |
已知该运动服的进价为每件150元.
(1)售价为元,月销量为件;
①求关于的函数关系式;
②若销售该运动服的月利润为元,求关于的函数关系式,并求月利润最大时的售价;
(2)由于运动服进价降低了元,商家决定回馈顾客,打折销售,这时月销量与调整后的售价仍满足(1)中函数关系式.结果发现,此时月利润最大时的售价比调整前月利润最大时的售价低15元,则的值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,M是弦与弧所围成的图形的内部的一个定点,P是弦上一动点,连接并延长交弧于点Q,连接.
已知,设A,P两点间的距离为,P,Q两点间距离为,两点间距离为.
小明根据学习函数的经验,分别对函数随自变量x的变化而变化的规律进行了研究.下面是小明的探究过程,请补充完整.
(1)按照如表中自变量x的值进行取点、画图、测量,分别得到了与x的几组对应值,补全下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
5.24 | 4.24 | 3.24 | 1.54 | 1.79 | 3.47 | ||
1.31 | 1.34 | 1.42 | 1.54 | 1.80 | 2.45 | 3.47 |
(2)在同一平面直角坐标系中,描出表中各组数值对应的点和并画出函数的图象;
(3)结合函数图象,解决问题:当为等腰三角形时,的长度约_________.(精确到0.1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知二次函数的图象与x轴交于点,与y轴交于点B,将其图象在点A,B之间的部分(含A,B两点)记为F.
(1)求点B的坐标及该函数的表达式;
(2)若二次函数的图象与F只有一个公共点,结合函数图象,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.
(1)求证:BF=CD;
(2)连接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四边形ABCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】云岗石窟位于山西大同市,是中国规模最大的古代石窟群之一,位于第五窟的三世佛的中央坐像是云冈石窟最大的佛像.某数学课题研究小组针对“三世佛的中央坐像的高度有多少米”这一问题展开探究,过程如下:
问题提出:
如图①是三世佛的中央坐像,请你设计方案并求出它的高度.
方案设计:
如图②,该课题研究小组通过研究设计了这样一个方案,某同学在处用测角器测得佛像最高处的仰角,另一个同学在他的后方的处测得佛像底端的仰角.
数据收集:
通过查阅资料和实际测量:佛像底端到观景台的垂直距离为.
问题解决:
(1)根据上述方案及数据,求佛像的高度;(结果保留整数,参考数据:,,,,,)
(2)在实际测量的过程中,有哪些措施可以减小测量数据产生的误差?(写出一条即可)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com