精英家教网 > 初中数学 > 题目详情

【题目】如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是(
A.2
B.
C.
D.

【答案】C
【解析】解:∵OP平分∠AOB,∠AOB=60°, ∴∠AOP=∠COP=30°,
∵CP∥OA,
∴∠AOP=∠CPO,
∴∠COP=∠CPO,
∴OC=CP=2,
∵∠PCE=∠AOB=60°,PE⊥OB,
∴∠CPE=30°,
∴CE= CP=1,
∴PE= =
∴OP=2PE=2
∵PD⊥OA,点M是OP的中点,
∴DM= OP=
故选:C.
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是等腰三角形,∠BAC=90°,点DBC的中点,作正方形DEFG,使点A、C分别在DGDE上,连接AE、BG.

(1)试猜想线段BGAE的数量关系;

(2)如图,将正方形DEFG绕点D按逆时针方向旋转α(0°<α≤90°),判断(1)中的结论是否仍然成立,证明你的结论.

(3)BC=DE=2,在(2)的旋转过程中,求线段AE长的最大值和最小值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为a的正方形上剪去一个边长为b的小正方形(ab),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是( )

A. a2b2(ab)(ab) B. (ab)2a22abb2

C. (ab)2a22abb2 D. a2aba(ab)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列平面直角坐标系中画出函数y1=-x+3,y2=3x-4的图象.观察图象,回答下列问题:

(1)当x取何值时,y1=y2?

(2)当x取何值时,y1>y2?

(3)当x取何值时,y1<y2?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图O是直线AB上一点OD平分∠AOCDOE=90°,则以下结论正确的个数是(  )

①∠AOD与∠BOE互为余角;②∠AODCOE③∠BOECOE④∠DOC与∠DOB互补.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1点O为直线AB上一点过O点作射线OC使BOC=120°将一直角三角板的直角顶点放在点O处一边OM在射线OB上另一边ON在直线AB的下方

1如图2将图1中的三角板绕点O逆时针旋转使边OM在BOC的内部且OM恰好平分BOC此时AOM= 度;

2如图3继续将图2中的三角板绕点O按逆时针方向旋转使得ON在AOC的内部试探究AOM与NOC之间满足什么等量关系并说明理由;

3将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周在旋转的过程中若直线ON恰好平分AOC则此时三角板绕点O旋转的时间是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:(1)2x-5=3x+2;

(2)3(x+2)-2(2x-3)=12;

(3) =1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.
(1)观察猜想:如图(1),当点D在线段BC上时,

①BC与CF的位置关系是:
②BC、CD、CF之间的数量关系为:(将结论直接写在横线上)
(2)数学思考:如图(2),当点D在线段CB的延长线上时,上述①、②中的结论是否仍然成立?若成立,请给予证明,若不成立,请你写出正确结论再给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线ADBCD,过BBE⊥ADADF,交ACE.

(1)求证:△ABE为等腰三角形;

(2)已知AC=11,AB=6,求BD长.

查看答案和解析>>

同步练习册答案