【题目】如图,在□ABCD中,AC与BD相交于点O,过点B作BE∥AC,联结OE交BC于点F,点F为BC的中点.
(1)求证:四边形AOEB是平行四边形;
(2)如果∠OBC=∠E,求证:BOOC=ABFC.
【答案】(1)见解析;(2)见解析.
【解析】
(1)根据BE∥AC,△COF∽△BEF,又因为F为BC的中点可得CF=BF,所以BE=OC=OA,结合BE∥AC,即可证得AOEB是平行四边形.
(2)根据题意可证得△COB∽△CBA,即,在依据AC=2OC,BC=2FC,可得,即可证得BOOC=ABFC
(1)∵BE∥AC,
∴△COF∽△BEF
∴
∵点F为BC的中点,
∴CF=BF,
∴OC=BE
∵四边形ABCD是平行四边形,
∴AO=CO
∴AO=BE
∵BE∥AC,
∴四边形AOEB是平行四边形
(2)∵四边形AOEB是平行四边形,
∴∠BAO=∠E
∵∠OBC=∠E,
∴∠BAO=∠OBC
∵∠ACB=∠BCO,
∴△COB∽△CBA
∴
∵四边形ABCD是平行四边形,
∴AC=2OC
∵点F为BC的中点,
∴BC=2FC
∴
即BOOC=ABFC.
科目:初中数学 来源: 题型:
【题目】如图(1),在Rt△ABC中,∠A=90°,AB=AC=4,D、E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,如图(2),设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.
(1)求证:BD1=CE1;
(2)当∠CPD1=2∠CAD1时,则旋转角为α= (直接写结果)
(3)连接PA,△PAB面积的最大值为 (直接写结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ΔABC中,AB=AC,若将ΔABC绕点C顺时针180得到ΔFEC。
(1)试猜想AE与BF有何关系,并说明理由;
(2)若ΔABC的面积为3cm2,求四边形ABFE的面积;
(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC内接于⊙O,AF是⊙O的弦,AF⊥BC,垂足为D,点E为上一点,且BE=CF,
(1)求证:AE是⊙O的直径;
(2)若∠ABC=∠EAC,AE=4,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点、,将线段绕着原点逆时针方向旋转角度到,连接,将绕着点顺时针方向旋转角度至,连接.
(1)当,时,求的长.
(2)当,时,求的长.
(3)已知,当时,改变的大小,求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于点和点,给出如下定义:若,则称点为点的限变点.例如:点的限变点的坐标是,点的限变点的坐标是.
(1)①点的限变点的坐标是___________;
②在点,中有一个点是函数图象上某一个点的限变点,这个点是_______________;
(2)若点在函数的图象上,其限变点的纵坐标的取值范围是,求的取值范围;
(3)若点在关于的二次函数的图象上,其限变点的纵坐标的取值范围是或,其中.令,求关于的函数解析式及的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com