精英家教网 > 初中数学 > 题目详情

【题目】(发现问题)爱好数学的小明在做作业时碰到这样的一道题目:

如图①,点O为坐标原点,⊙O的半径为1,点A(2,0).动点B在⊙O上,连结AB,作等边△ABC(A,B,C为顺时针顺序),求OC的最大值

(解决问题)小明经过多次的尝试与探索,终于得到解题思路:在图①中,连接OB,以OB为边在OB的左侧作等边三角形BOE,连接AE.

(1)请你找出图中与OC相等的线段,并说明理由;

(2)求线段OC的最大值.

(灵活运用)

(3)如图②,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.

(迁移拓展)

(4)如图③,BC=4,点D是以BC为直径的半圆上不同于B、C的一个动点,以BD为边作等边△ABD,请直接写出AC的最值.

【答案】(1)结论:OC=AE,理由见解析;(2)OC的最大值为3;(3)最大值为2+3;P(2﹣);(4)AC的最大值为2+2, 2﹣2

【解析】

1)结论:,只要证明即可;

2)利用三角形的三边关系即可解决问题;

3)连接,将绕着点顺时针旋转得到,连接,得到是等腰直角三角形,根据全等三角形的性质得到,根据当在线段的延长线时,线段取得最大值,即可得到最大值为,过轴于,根据等腰直角三角形的性质,即可得到结论;

4)如图4中,以为边作等边三角形,由,推出,推出欲求的最大值,只要求出的最大值即可,由定值,,推出点在以为直径的上运动,由图象可知,当点上方,时,的值最大.

(1)如图①中,结论:OC=AE,

理由:∵△ABC,△BOE都是等边三角形,

∴BC=BA,BO=BE,∠CBA=∠OBE=60°,

∴∠CBO=∠ABE,

∴△CBO≌△ABE,

∴OC=AE.

(2)在△AOE中,AE≤OE+OA,

∴当E、O、A共线,

∴AE的最大值为3,

∴OC的最大值为3.

(3)如图1,连接BM,

∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,

∴PN=PA=2,BN=AM,

∵A的坐标为(2,0),点B的坐标为(5,0),

∴OA=2,OB=5,

∴AB=3,

∴线段AM长的最大值=线段BN长的最大值,

∴当N在线段BA的延长线时,线段BN取得最大值(如图2中)

最大值=AB+AN,

∵AN=AP=2

∴最大值为2+3;

如图2,过P作PE⊥x轴于E,

∵△APN是等腰直角三角形,

∴PE=AE=

∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣

∴P(2﹣).

(4)如图4中,以BC为边作等边三角形△BCM,

∵∠ABD=∠CBM=60°,

∴∠ABC=∠DBM,∵AB=DB,BC=BM,

∴△ABC≌△DBM,

∴AC=MD,

∴欲求AC的最大值,只要求出DM的最大值即可,

∵BC=4=定值,∠BDC=90°,

∴点D在以BC为直径的⊙O上运动,

由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大,最大值=2+2

∴AC的最大值为2+2

当点A在线段BD的右侧时,同法可得AC的最小值为2﹣2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片折叠,使点与点重合,点落在处,折痕为,若,则线段的长度为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点的坐标分别为.线段组成的图形为图形,点沿移动,设点移动的距离为,直线过点,且在点移动过程中,直线运动而运动.

1)若点过点时,求直线的解析式;

2)当过点时,求值;

3)①若直线与图形有一个交点,直接写出的取值范围;

②若直线与图形有两个交点,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x()(0x20)之间满足一次函数关系,其图象如图所示:

(1)yx之间的函数关系式;

(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?

(3)该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬中华传统文化,黔南州近期举办了中小学生国学经典大赛.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分单人组双人组”.

(1)小丽参加单人组,她从中随机抽取一个比赛项目,恰好抽中三字经的概率是多少?

(2)小红和小明组成一个小组参加双人组比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中唐诗且小明抽中宋词的概率是多少?请用画树状图或列表的方法进行说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线轴于两点,与轴交于点,连接

求抛物线的解析式;

轴下方抛物线上的一点,且,请通过计算或推理判断的位置关系:

轴左侧的抛物线上是否存在与点不重合的点,使等于中的某个锐角? 若存在,请求出的值:若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线分别交x轴、y轴于点BC,正方形AOCD的顶点D在第二象限内,EBC中点,OFDE于点F,连结OE,动点PAO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.

1)求点B的坐标和OE的长;

2)设点Q2为(mn),当tanEOF时,求点Q2的坐标;

3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.

①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3QsAPt,求s关于t的函数表达式.

②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:若关于x的一元二次方程ax2+bx+c0的两个非零实数根分别为x1x2,则x1+x2=﹣x1x2.

解决下列问题:已知关于x的一元二次方程(x+n)26x有两个非零不等实数根x1x2,设m

()n1时,求m的值;

()是否存在这样的n值,使m的值等于?若存在,求出所有满足条件的n的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,以等边的边为直径作,分别交于点,过点于点

1)求证:的切线;

2)若等边的边长为8,求由围成的阴影部分面积.

查看答案和解析>>

同步练习册答案