【题目】如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长,交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为( )
A.
B.
C.
D.
【答案】D
【解析】解:∵四边形ABCD是正方形, ∴∠ABC=∠PCF=90°,CD∥AB,
∵P为CD的中点,CD=AB=BC=2,
∴CP=1,
∵PC∥AB,
∴△FCP∽△FBA,
∵CP=1,AB=BC=2,
∴ = ,
∴ = ,
∴BF=4,
∴CF=4﹣2=2,
由勾股定理得:BP= = ,
∵四边形ABCD是正方形,
∴∠BCP=∠PCF=90°,
∴PF是直径,
∴∠E=90°=∠BCP,
∵∠PBC=∠EBF,
∴△BCP∽△BEF,
∴ ,
∴ = ,
∴EF= ,
故选:D.
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形,以及对圆周角定理的理解,了解顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D,E分别是AC,AB上的两点,且 = = ,若△ADE的面积为1cm2 , 则四边形EBCD的面积为( )cm2 .
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AOB为等腰三角形,顶点A的坐标(2, ),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,请你求出点O′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小丽有5张写着不同数的卡片,请你按要求抽出卡片,完成下列各题:
(1)从中取出3张卡片,如何抽取才能使这3张卡片上的数依次先相乘再相除的结果最大?最大值是多少?
(2)从中取出3张卡片,如何抽取才能使这3张卡片上的数依次先相除再相乘的结果最小?最小值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=90°,OM是∠AOC的角平分线,ON是∠BOC的角平分线;
(1)当∠BOC=40°时,求∠MON的大小?
(2)当∠BOC的大小发生变化时,∠MON的大小是否发生改变?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
(3)若AD=3,AE=5,则菱形AECF的面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,以此方法继续操作,即可拼成一个新的正方形DEFG.
请你参考小明的做法解决下列问题:
(1)现有5个形状,大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形,要求:在图3中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可).
(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE,所得□MNPQ面积为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com