【题目】如图,△AOB为等腰三角形,顶点A的坐标(2, ),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,请你求出点O′的坐标.
【答案】
【解析】试题分析:过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.
解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D.
∵A(2,),
∴OC=2,AC=,
由勾股定理得,OA==3,
∵△AOB为等腰三角形,OB是底边,
∴OB=2OC=2×2=4,
由cos∠ABC==
∴=,
∴BD=
∴O′D==,
∴OD=OB+BD=4+=,
∴点O′的坐标为(,),
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是( )
A.45°
B.30°
C.25°
D.15°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的坐标系中,△ABC的三个顶点的坐标依次为A(﹣1,2),B(﹣4,1),C(﹣2,﹣2)
(1)请写出△ABC关于x轴对称的点A1、B1、C1的坐标;
(2)请在这个坐标系中作出△ABC关于y轴对称的△A2B2C2;
(3)计算:△A2B2C2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一艘载重480 t的船,容积是1 050 m3,现有甲种货物450 m3,乙种货物350 t,而甲种货物每吨的体积为2.5 m3,乙种货物每立方米0.5 t.问:(1)甲、乙两种货物是否都能装上船?如果不能,请说明理由.
(2)为了最大限度地利用船的载质量和容积,两种货物应各装多少吨?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老师在黑板上出了一道解方程的题,小明马上举手,要求到黑板上做,他是这样做的:
……………… …①
…………………… …②
…………………… …③
………………………………… ④
………………………………… ⑤
老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);
然后,你自己细心地解下面的方程:
(1) (2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8 …,顶点依次为A1,A2,A3,A4,A5,…,则顶点A55的坐标是( )
A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABO的顶点A是双曲线y=与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.
(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A.C的坐标和△AOC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长,交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解下面内容,并解决问题:
善于思考的小明在学习《实数》一章后,自己探究出了下面的两个结论:
①,,和都是9×4的算术平方根,
而9×4的算术平方根只有一个,所以=.
②,,和都是9×16的算术平方根,
而9×16的算术平方根只有一个,所以 .
请解决以下问题:
(1)请仿照①帮助小明完成②的填空,并猜想:一般地,当a≥0,b≥0时,与、之间的大小关系是怎样的?
(2)再举一个例子,检验你猜想的结果是否正确.
(3)运用以上结论,计算:的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com