精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是(  )

A.45°
B.30°
C.25°
D.15°

【答案】D
【解析】由旋转的性质可知,AC=AC′,又∠CAC′=90°,可知△CAC′为等腰直角三角形,所以,∠CC′A=45°.∵∠CC′B′+∠ACC′=∠AB′C′=∠B=60°,
∴∠CC′B′=15°.故选D.
【考点精析】掌握旋转的性质是解答本题的根本,需要知道①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现(  )

A.3次
B.4次
C.5次
D.6次

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=90°B=45°BC=10 cm,过点AADBC且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1cm的速度运动,同时点Q从点C出发沿射线CB方向以每秒2cm的速度运动,在线段QC上取点E,使得QE =2cm,连结PE,设点P的运动时间为t秒.

1)若PEBC,则①PE= cmCE= 用含t的式子表示)

②求BQ的长;

2)请问是否存在t的值,使以ABEP为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇同学要证明命题两组对边分别相等的四边形是平行四边形是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.

已知:如图1,在四边形ABCD中,BC=AD,AB=

求证:四边形ABCD 四边形.

(1)在方框中填空,以补全已知和求证;

(2)按嘉淇同学的思路写出证明过程;

(3)用文字叙述所证命题的逆命题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是(  )

A.110°
B.80°
C.40°
D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.
求证:

(1)△ADA′≌△CDE;
(2)直线CE是线段AA′的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D,E分别是AC,AB上的两点,且 = = ,若△ADE的面积为1cm2 , 则四边形EBCD的面积为( )cm2

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AOB为等腰三角形,顶点A的坐标(2, ),底边OB在x轴上.将AOB绕点B按顺时针方向旋转一定角度后得A′O′B,点A的对应点A′在x轴上,请你求出点O′的坐标.

查看答案和解析>>

同步练习册答案